General Description

The IDT8T49N008I is an eight output Clock Synthesizer with selectable LVDS or LVPECL outputs. The IDT8T49N008I can synthesize any one of four frequencies from a single crystal or reference clock. The four frequencies are selected from the Frequency Selection Table (Table 3A) and are programmed via I2C interface. The four predefined frequencies are selected in the user application by two frequency selection pins. Note the desired programmed frequencies must be used with the corresponding crystal or clock frequency as indicated in Table 3A.

Excellent phase noise performance is maintained with IDT’s Fourth Generation FemtoClock® NG PLL technology, which delivers sub-400fs RMS phase jitter.

Features

- Fourth Generation FemtoClock NG PLL technology
- Eight selectable LVPECL or LVDS outputs
- CLK, nCLK input pair can accept the following differential input levels: LVPECL, LVDS, HCSL
- FemtoClock NG VCO Range: 1.91GHz - 2.5GHz
- RMS phase jitter at 156.25MHz (12kHz - 20MHz): 228fs (typical)
- RMS phase jitter at 156.25MHz (10kHz - 1MHz): 175fs (typical)
- Full 2.5V or 3.3V power supply
- I2C programming interface
- PCI Express (2.5 Gb/S), Gen 2 (5 Gb/s) and Gen 3 (8 Gb/s) jitter compliant
- -40°C to 85°C ambient operating temperature
- Lead-free (RoHS 6) packaging

Pin Assignment

IDT8T49N008I
40-Lead VFQFN
6mm x 6mm x 0.925mm package body
4.65mm x 4.65mm E-Pad
NL Package
Block Diagram

CLK_SEL

XTAL_IN

XTAL_OUT

CLK

nCLK

Xtal

Osc

÷P[1:0]

0

1

Xtal

Osc

÷P[1:0]

0

1

Phase

Detector

+P[1:0]

Charge

Pump

FemtoClock® NG

VCO

÷N[6:0]

÷M[8:1]

LOCK

Q0

nQ0

Q1

nQ1

Q2

nQ2

Q3

nQ3

Q4

nQ4

Q5

nQ5

Q6

nQ6

Q7

nQ7

OUTPUT ENABLE

8

OUTPUT STYLE

8

FSEL 0

Pulldown

Pulldown

Pulldown

Pulldown

Pulldown

PU/PD

PU/PD

PU/PD

PU/PD

PU/PD

SCLK

SDATA

ADDR_SEL

Divider,

Output Type

&

Output

Enable

Selection

VPP/FSEL

G_CLK/FSEL

SCLK

SDATA

ADDR_SEL
Pin Description and Pin Characteristic Tables

Table 1. Pin Descriptions

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2</td>
<td>Q0, nQ0</td>
<td>Output</td>
<td>Differential output pair. LVPECL or LVDS interface levels.</td>
</tr>
<tr>
<td>3, 4</td>
<td>Q1, nQ1</td>
<td>Output</td>
<td>Differential output pair. LVPECL or LVDS interface levels.</td>
</tr>
<tr>
<td>5, 26</td>
<td>V<sub>CC</sub></td>
<td>Power</td>
<td>Output supply pins.</td>
</tr>
<tr>
<td>6, 7</td>
<td>Q2, nQ2</td>
<td>Output</td>
<td>Differential output pair. LVPECL or LVDS interface levels.</td>
</tr>
<tr>
<td>8, 9</td>
<td>Q3, nQ3</td>
<td>Output</td>
<td>Differential output pair. LVPECL or LVDS interface levels.</td>
</tr>
<tr>
<td>10, 13, 18, 21, 31, 34, 37, 40</td>
<td>V<sub>EE</sub></td>
<td>Power</td>
<td>Negative supply pins.</td>
</tr>
<tr>
<td>11, 12</td>
<td>XTAL<sub>IN</sub>, XTAL<sub>OUT</sub></td>
<td>Input</td>
<td>Crystal oscillator interface. XTAL<sub>IN</sub> is the input, XTAL<sub>OUT</sub> is the output. Crystal frequency is selected from Table 3A.</td>
</tr>
<tr>
<td>14</td>
<td>CLK</td>
<td>Input</td>
<td>Non-inverting differential clock input.</td>
</tr>
<tr>
<td>15</td>
<td>nCLK</td>
<td>Input</td>
<td>Inverting differential clock input. Internal resistor bias to V<sub>CC</sub>/2.</td>
</tr>
<tr>
<td>16, 20</td>
<td>FSEL0, FSEL1</td>
<td>Input</td>
<td>Frequency and configuration. Selects between one of four factory programmable power-up default configurations. The four configurations can have different PLL states, output frequencies, output styles and output states. These default configurations can be overwritten after power-up via I<sub>2</sub>C. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>17</td>
<td>ADDR_SEL</td>
<td>Input</td>
<td>I<sub>2</sub>C Address select pin. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>19, 38</td>
<td>V<sub>CC</sub></td>
<td>Power</td>
<td>Core supply pins.</td>
</tr>
<tr>
<td>22, 23</td>
<td>nQ7, Q7</td>
<td>Output</td>
<td>Differential output pair. LVPECL or LVDS interface levels.</td>
</tr>
<tr>
<td>24, 25</td>
<td>nQ6, Q6</td>
<td>Output</td>
<td>Differential output pair. LVPECL or LVDS interface levels.</td>
</tr>
<tr>
<td>27, 28</td>
<td>nQ5, Q5</td>
<td>Output</td>
<td>Differential output pair. LVPECL or LVDS interface levels.</td>
</tr>
<tr>
<td>29, 30</td>
<td>nQ4, Q4</td>
<td>Output</td>
<td>Differential output pair. LVPECL or LVDS interface levels.</td>
</tr>
<tr>
<td>32</td>
<td>SCLK</td>
<td>Input</td>
<td>I<sub>2</sub>C Clock Input. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>33</td>
<td>SDATA</td>
<td>Input/Output</td>
<td>I<sub>2</sub>C Data Input. LVCMOS/LVTTL interface levels. Output: Open Drain.</td>
</tr>
<tr>
<td>35</td>
<td>V<sub>CCA</sub></td>
<td>Power</td>
<td>Analog supply pin.</td>
</tr>
<tr>
<td>36</td>
<td>LOCK</td>
<td>Output</td>
<td>PLL Lock Indicator. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>39</td>
<td>CLK_SEL</td>
<td>Input</td>
<td>Input source control pin. LVCMOS/LVTTL interface levels.</td>
</tr>
</tbody>
</table>

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C<sub>IN</sub></td>
<td>Input Capacitance</td>
<td></td>
<td>3.5</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>R<sub>PULLDOWN</sub></td>
<td>Input Pulldown Resistor</td>
<td></td>
<td>51</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>R<sub>PULLUP</sub></td>
<td>Input Pullup Resistor</td>
<td></td>
<td>51</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
</tbody>
</table>
Frequency Configuration

Table 3A. Frequency Configuration Examples

<table>
<thead>
<tr>
<th>Output Frequencies (MHz)</th>
<th>Input Frequency or Crystal Frequency (MHz)</th>
<th>Input Clock Divider P</th>
<th>Input Clock Prescaler PS</th>
<th>Feedback Divider M</th>
<th>Output Divider N</th>
<th>VCO Frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.72</td>
<td>30.72</td>
<td>1</td>
<td>x2</td>
<td>32</td>
<td>64</td>
<td>1966.08</td>
</tr>
<tr>
<td>61.44</td>
<td>30.72</td>
<td>1</td>
<td>x2</td>
<td>32</td>
<td>32</td>
<td>1966.08</td>
</tr>
<tr>
<td>62.5</td>
<td>25</td>
<td>1</td>
<td>x2</td>
<td>40</td>
<td>32</td>
<td>2000</td>
</tr>
<tr>
<td>76.8</td>
<td>30.72</td>
<td>1</td>
<td>x2</td>
<td>40</td>
<td>32</td>
<td>2457.6</td>
</tr>
<tr>
<td>78.125</td>
<td>25</td>
<td>1</td>
<td>x2</td>
<td>50</td>
<td>32</td>
<td>2500</td>
</tr>
<tr>
<td>100</td>
<td>25</td>
<td>1</td>
<td>x2</td>
<td>40</td>
<td>20</td>
<td>2000</td>
</tr>
<tr>
<td>106.25</td>
<td>26.5625</td>
<td>1</td>
<td>x2</td>
<td>40</td>
<td>20</td>
<td>2125</td>
</tr>
<tr>
<td>122.8</td>
<td>30.72</td>
<td>1</td>
<td>x2</td>
<td>32</td>
<td>16</td>
<td>1966.08</td>
</tr>
<tr>
<td>125</td>
<td>25</td>
<td>1</td>
<td>x2</td>
<td>40</td>
<td>16</td>
<td>2000</td>
</tr>
<tr>
<td>133.33</td>
<td>25</td>
<td>1</td>
<td>x2</td>
<td>48</td>
<td>18</td>
<td>2400</td>
</tr>
<tr>
<td>148.5</td>
<td>27</td>
<td>1</td>
<td>x2</td>
<td>44</td>
<td>16</td>
<td>2376</td>
</tr>
<tr>
<td>150</td>
<td>25</td>
<td>1</td>
<td>x2</td>
<td>42</td>
<td>14</td>
<td>2100</td>
</tr>
<tr>
<td>153.6</td>
<td>30.72</td>
<td>1</td>
<td>x2</td>
<td>40</td>
<td>16</td>
<td>2457.6</td>
</tr>
<tr>
<td>155.52</td>
<td>19.44</td>
<td>1</td>
<td>x2</td>
<td>64</td>
<td>16</td>
<td>2488.32</td>
</tr>
<tr>
<td>156.25</td>
<td>25</td>
<td>1</td>
<td>x2</td>
<td>50</td>
<td>16</td>
<td>2500</td>
</tr>
<tr>
<td>159.375</td>
<td>26.5625</td>
<td>1</td>
<td>x2</td>
<td>36</td>
<td>12</td>
<td>1912.5</td>
</tr>
<tr>
<td>160</td>
<td>20</td>
<td>1</td>
<td>x2</td>
<td>48</td>
<td>12</td>
<td>1920</td>
</tr>
<tr>
<td>166.66</td>
<td>25</td>
<td>1</td>
<td>x2</td>
<td>40</td>
<td>12</td>
<td>2000</td>
</tr>
<tr>
<td>184.32</td>
<td>30.72</td>
<td>1</td>
<td>x2</td>
<td>36</td>
<td>12</td>
<td>2211.84</td>
</tr>
<tr>
<td>187.5</td>
<td>25</td>
<td>1</td>
<td>x1</td>
<td>90</td>
<td>12</td>
<td>2250</td>
</tr>
<tr>
<td>200</td>
<td>25</td>
<td>1</td>
<td>x2</td>
<td>40</td>
<td>10</td>
<td>2000</td>
</tr>
<tr>
<td>212.5</td>
<td>26.5625</td>
<td>1</td>
<td>x2</td>
<td>40</td>
<td>10</td>
<td>2125</td>
</tr>
<tr>
<td>250</td>
<td>25</td>
<td>1</td>
<td>x2</td>
<td>40</td>
<td>8</td>
<td>2000</td>
</tr>
<tr>
<td>300</td>
<td>25</td>
<td>1</td>
<td>x2</td>
<td>48</td>
<td>8</td>
<td>2400</td>
</tr>
<tr>
<td>311.04</td>
<td>19.44</td>
<td>1</td>
<td>x2</td>
<td>64</td>
<td>8</td>
<td>2488.32</td>
</tr>
<tr>
<td>312.5</td>
<td>77.76</td>
<td>1</td>
<td>x1</td>
<td>32</td>
<td>8</td>
<td>2488.32</td>
</tr>
<tr>
<td>318.75</td>
<td>155.52</td>
<td>2</td>
<td>x1</td>
<td>32</td>
<td>8</td>
<td>2488.32</td>
</tr>
<tr>
<td>322.265625</td>
<td>156.25</td>
<td>5</td>
<td>x2</td>
<td>40</td>
<td>8</td>
<td>2500</td>
</tr>
<tr>
<td>325</td>
<td>26.5625</td>
<td>1</td>
<td>x2</td>
<td>36</td>
<td>6</td>
<td>1912.5</td>
</tr>
<tr>
<td>375</td>
<td>25</td>
<td>1</td>
<td>x1</td>
<td>90</td>
<td>6</td>
<td>1933.59375</td>
</tr>
<tr>
<td>400</td>
<td>25</td>
<td>1</td>
<td>x2</td>
<td>40</td>
<td>5</td>
<td>2000</td>
</tr>
<tr>
<td>425</td>
<td>26.5625</td>
<td>1</td>
<td>x2</td>
<td>40</td>
<td>5</td>
<td>2125</td>
</tr>
<tr>
<td>491.52</td>
<td>30.72</td>
<td>1</td>
<td>x2</td>
<td>32</td>
<td>4</td>
<td>1966.08</td>
</tr>
<tr>
<td>614.4</td>
<td>30.72</td>
<td>1</td>
<td>x2</td>
<td>40</td>
<td>4</td>
<td>2457.6</td>
</tr>
<tr>
<td>622.08</td>
<td>19.44</td>
<td>1</td>
<td>x2</td>
<td>64</td>
<td>4</td>
<td>2488.32</td>
</tr>
<tr>
<td>625</td>
<td>25</td>
<td>1</td>
<td>x2</td>
<td>50</td>
<td>4</td>
<td>2500</td>
</tr>
<tr>
<td>1228.88</td>
<td>30.72</td>
<td>1</td>
<td>x2</td>
<td>40</td>
<td>2</td>
<td>2457.6</td>
</tr>
</tbody>
</table>

NOTE: Each device supports 4 output frequencies (with related input or crystal value) as selected from this table Register Settings.

NOTE: XTAL operation: \(f_{\text{OUT}} = f_{\text{REF}} \times PS \times M / N \); CLK, nCLK input operation: \(f_{\text{OUT}} = (f_{\text{REF}} / P) \times PS \times M / N \).
<table>
<thead>
<tr>
<th>Register</th>
<th>Binary Register Address</th>
<th>D7</th>
<th>D6</th>
<th>D5</th>
<th>D4</th>
<th>D3</th>
<th>D2</th>
<th>D1</th>
<th>D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>01000</td>
<td>unused</td>
<td>PS0[1]</td>
<td>PS0[0]</td>
<td>P0[1]</td>
<td>P0[0]</td>
<td>P0[0]</td>
<td>P0[0]</td>
<td>CP0[0]</td>
</tr>
<tr>
<td>9</td>
<td>01001</td>
<td>unused</td>
<td>PS1[1]</td>
<td>PS1[0]</td>
<td>P1[1]</td>
<td>P1[0]</td>
<td>P1[0]</td>
<td>P1[0]</td>
<td>CP1[0]</td>
</tr>
<tr>
<td>10</td>
<td>01010</td>
<td>unused</td>
<td>PS2[1]</td>
<td>PS2[0]</td>
<td>P2[1]</td>
<td>P2[0]</td>
<td>P2[0]</td>
<td>P2[0]</td>
<td>CP2[0]</td>
</tr>
<tr>
<td>11</td>
<td>01011</td>
<td>unused</td>
<td>PS3[1]</td>
<td>PS3[0]</td>
<td>P3[1]</td>
<td>P3[0]</td>
<td>P3[0]</td>
<td>P3[0]</td>
<td>CP3[0]</td>
</tr>
<tr>
<td>20</td>
<td>10100</td>
<td>reserved</td>
<td>reserved</td>
<td>reserved</td>
<td>reserved</td>
<td>reserved</td>
<td>reserved</td>
<td>reserved</td>
<td>unused</td>
</tr>
<tr>
<td>21</td>
<td>10101</td>
<td>unused</td>
<td>unused</td>
<td>unused</td>
<td>unused</td>
<td>unused</td>
<td>unused</td>
<td>unused</td>
<td>unused</td>
</tr>
<tr>
<td>22</td>
<td>10110</td>
<td>unused</td>
<td>unused</td>
<td>unused</td>
<td>unused</td>
<td>unused</td>
<td>unused</td>
<td>unused</td>
<td>unused</td>
</tr>
<tr>
<td>23</td>
<td>10111</td>
<td>unused</td>
<td>unused</td>
<td>unused</td>
<td>unused</td>
<td>unused</td>
<td>unused</td>
<td>unused</td>
<td>unused</td>
</tr>
</tbody>
</table>
Table 3C. I^2C Function Descriptions

<table>
<thead>
<tr>
<th>Bits</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pn[1:0]</td>
<td>Input Clock Divider Register n (n = 0...3)</td>
<td>Sets the PLL input clock divider. The divider value has the range of 1, 2, 4 and 5. See Table 3F. Pn[1:0] bits are programmed with values to support default configuration settings for FSEL[1:0].</td>
</tr>
<tr>
<td>PSn(1:0)</td>
<td>Input Prescaler Register n (n = 0...3)</td>
<td>Sets the PLL input clock prescaler value. Valid prescaler values are x0.5, x1 or x2. See Table 3F. Set prescaler to x2 for optimum phase noise performance. PSn[1:0] bits are programmed with values to support default configuration settings for FSEL[1:0].</td>
</tr>
<tr>
<td>Mn[8:1]</td>
<td>Integer Feedback Divider Register n (n = 0...3)</td>
<td>Sets the integer feedback divider value. Based on the FemtoClock NG VCO range, the applicable feedback dividers settings are 16 thru 250. Please note the register value presents bits [8:1] of Mn, the LSB of Mn is not in the register. Mn[8:1] bits are programmed with values to support default configuration settings for FSEL[1:0].</td>
</tr>
<tr>
<td>Nn[6:0]</td>
<td>Output Divider Register n (n = 0...3)</td>
<td>Sets the output divider. The output divider value can range from 2, 3, 4, 5, 6 and 8, 10, 12 to 126 (step: 2). See Table 3G for the output divider coding. Nn[6:0] bits are programmed with values to support default configuration settings for FSEL[1:0].</td>
</tr>
<tr>
<td>CPn[1:0]</td>
<td>PLL Bandwidth Register n (n = 0...3)</td>
<td>Sets the FemtoClock NG PLL bandwidth by controlling the charge pump current. See Table 3H. CPn[1:0] bits are programmed with values to support default configuration settings for FSEL[1:0].</td>
</tr>
<tr>
<td>BYPASSn</td>
<td>PLL Bypass Register n (n = 0...3)</td>
<td>Bypasses PLL. Output of the prescaler is routed through the output divider N to the output fanout buffer. Programming a 1 to this bit bypasses the PLL. Programming a 0 to this bit routes the output of the prescaler through the PLL. BYPASSn bits are programmed with values to support default configuration settings for FSEL[1:0].</td>
</tr>
<tr>
<td>OEnQ0</td>
<td>Output Enable Register n (n = 0...3)</td>
<td>Sets the outputs to Active or High Impedance. Programming a 0 to this bit sets the outputs to High Impedance. Programming a 1 sets the outputs to active status. OEnQ0, OEnQ1, OEnQ2, OEnQ3, OEnQ4, OEnQ5, OEnQ6, OEnQ7 bits are programmed with values to support default configuration settings for FSEL[1:0].</td>
</tr>
<tr>
<td>LVDS_SELnQ0</td>
<td>Output Style Register n (n = 0...3)</td>
<td>Sets the differential output style to either LVDS or LVPECL interface levels. Programming a 1 to this bit sets the output styles to LVDS levels. Programming a 0 to this bit sets the output styles to LVPECL levels. LVDS_SELnQ0, LVDS_SELnQ1, LVDS_SELnQ2, LVDS_SELnQ3, LVDS_SELnQ4, LVDS_SELnQ5, LVDS_SELnQ6, LVDS_SELnQ7 bits are programmed with values to support default configuration settings for FSEL[1:0].</td>
</tr>
</tbody>
</table>
Table 3D. Feedback Divider Mn Coding

<table>
<thead>
<tr>
<th>Register Bit</th>
<th>Feedback Divider Mn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn[8:1]</td>
<td></td>
</tr>
<tr>
<td>Do Not Use</td>
<td>1 thru 15</td>
</tr>
<tr>
<td>00001000</td>
<td>16</td>
</tr>
<tr>
<td>00001001</td>
<td>18</td>
</tr>
<tr>
<td>00001010</td>
<td>20</td>
</tr>
<tr>
<td>00001011</td>
<td>22</td>
</tr>
<tr>
<td>00001100 thru 00011111</td>
<td>24 thru 62</td>
</tr>
<tr>
<td>00100000</td>
<td>64</td>
</tr>
<tr>
<td>00100001</td>
<td>66</td>
</tr>
<tr>
<td>00100010</td>
<td>68</td>
</tr>
<tr>
<td>00100011</td>
<td>70</td>
</tr>
<tr>
<td>00100100</td>
<td>72</td>
</tr>
<tr>
<td>... Mn</td>
<td></td>
</tr>
<tr>
<td>00110010</td>
<td>100</td>
</tr>
<tr>
<td>00110011</td>
<td>102</td>
</tr>
<tr>
<td>00110100</td>
<td>104</td>
</tr>
<tr>
<td>00110101</td>
<td>106</td>
</tr>
<tr>
<td>... Mn</td>
<td></td>
</tr>
<tr>
<td>01111010</td>
<td>244</td>
</tr>
<tr>
<td>01111011</td>
<td>246</td>
</tr>
<tr>
<td>01111100</td>
<td>248</td>
</tr>
<tr>
<td>01111101</td>
<td>250</td>
</tr>
</tbody>
</table>

Note: Mn is always an even value. The Mn[0] bits are not implemented.

Table 3E. PLL Pre-Scaler P Coding

<table>
<thead>
<tr>
<th>CLK_SEL</th>
<th>Input</th>
<th>P[1:0]</th>
<th>PS[1:0]</th>
<th>Input Clock Divider P</th>
<th>Input Clock Prescaler PS</th>
<th>Input Frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>XTAL</td>
<td>xx</td>
<td></td>
<td>00</td>
<td>1</td>
<td>x1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01</td>
<td>1</td>
<td>x0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1x</td>
<td>1</td>
<td>x2</td>
</tr>
<tr>
<td>01</td>
<td>CLK</td>
<td>00</td>
<td></td>
<td>00</td>
<td>1</td>
<td>x1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01</td>
<td>1</td>
<td>x0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1x</td>
<td>1</td>
<td>x2</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>01</td>
<td></td>
<td>00</td>
<td>2</td>
<td>x1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01</td>
<td>2</td>
<td>x0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1x</td>
<td>2</td>
<td>x2</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>00</td>
<td></td>
<td>00</td>
<td>4</td>
<td>x1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01</td>
<td>4</td>
<td>x0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1x</td>
<td>4</td>
<td>x2</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>00</td>
<td></td>
<td>00</td>
<td>5</td>
<td>x1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>01</td>
<td>5</td>
<td>x0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1x</td>
<td>5</td>
<td>x2</td>
</tr>
</tbody>
</table>
Table 3F. PLL Post Divider N Coding

<table>
<thead>
<tr>
<th>Register Bit</th>
<th>Output Divider N</th>
<th>Output Frequency Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nn[6:0]</td>
<td>fOUT_MIN (MHz)</td>
<td>fOUT_MAX (MHz)</td>
</tr>
<tr>
<td>000000X</td>
<td>2</td>
<td>Do Not Use</td>
</tr>
<tr>
<td>0000010</td>
<td>2</td>
<td>955</td>
</tr>
<tr>
<td>0000011</td>
<td>3</td>
<td>636.67</td>
</tr>
<tr>
<td>0000100</td>
<td>4</td>
<td>477.5</td>
</tr>
<tr>
<td>0000101</td>
<td>5</td>
<td>382</td>
</tr>
<tr>
<td>0000110</td>
<td>6</td>
<td>318.33</td>
</tr>
<tr>
<td>0001000</td>
<td>8</td>
<td>238.75</td>
</tr>
<tr>
<td>0001010</td>
<td>10</td>
<td>191</td>
</tr>
<tr>
<td>0001100</td>
<td>12</td>
<td>159.1667</td>
</tr>
<tr>
<td>0001110</td>
<td>14</td>
<td>136.4286</td>
</tr>
<tr>
<td>0010000</td>
<td>16</td>
<td>119.375</td>
</tr>
<tr>
<td>...</td>
<td>N (even integer)</td>
<td>(1910 ÷ N)</td>
</tr>
<tr>
<td>1111010</td>
<td>124</td>
<td>15.40</td>
</tr>
<tr>
<td>1111110</td>
<td>126</td>
<td>15.16</td>
</tr>
</tbody>
</table>

NOTE: X denotes “don’t care”.

Table 3G. FemtoClock NG PLL Bandwidth Coding

<table>
<thead>
<tr>
<th>Register Bit</th>
<th>Feedback Divider Value Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPn1 CPn0</td>
<td>Minimum</td>
</tr>
<tr>
<td>0 0</td>
<td>16</td>
</tr>
<tr>
<td>0 1</td>
<td>48</td>
</tr>
<tr>
<td>1 0</td>
<td>100</td>
</tr>
<tr>
<td>1 1</td>
<td>192</td>
</tr>
</tbody>
</table>

NOTE: FemtoClock NG PLL stability is only guaranteed over the feedback divider ranges listed is Table 3G.
Power-up Default Configuration Description

The IDT8T49N008I supports a variety of options such as different output styles, number of programmed default frequencies, output enable and operating temperature range. The device options and default frequencies must be specified at the time of order and are programmed by IDT prior to shipment. The document, *Programmable FemtoClock® NG Product Ordering Guide* specifies the available order codes, including the device options and default frequency configurations. Example part number: 8T49N004A-007NLGI, specifies a quad frequency clock generator with default frequencies of 106.25MHz, 133.333MHz, 156.25MHz and 156.25MHz, with four LVDS outputs that are enabled after power-up, specified over the industrial temperature range and housed in a lead-free (6/6 RoHS) VFQFN package.

Other order codes with respective programmed frequencies are available from IDT upon request. After power-up changes to the output frequencies are controlled by FSEL[1:0] or the I2C interface. Changes to the output styles and states of outputs (enabled or disabled) can also be controlled with the I2C interface after power up.

Table 3H. Power-up Default Settings

<table>
<thead>
<tr>
<th>FSEL1</th>
<th>FSEL0</th>
<th>Frequency</th>
<th>PLL State (On or Bypass)</th>
<th>Output State (Active or High Impedance)</th>
<th>Output Style (LVDS or LVPECL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (default)</td>
<td>0 (default)</td>
<td>Frequency 0</td>
<td>PLL State 0</td>
<td>Output State 0</td>
<td>Output Style 0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Frequency 1</td>
<td>PLL State 1</td>
<td>Output State 1</td>
<td>Output Style 1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Frequency 2</td>
<td>PLL State 2</td>
<td>Output State 2</td>
<td>Output Style 2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Frequency 3</td>
<td>PLL State 3</td>
<td>Output State 3</td>
<td>Output Style 3</td>
</tr>
</tbody>
</table>

Serial Interface Configuration Description

The IDT8T49N008I has an I2C-compatible configuration interface to access any of the internal registers (Table 3B) for frequency and PLL parameter programming. The IDT849N0081 acts as a slave device on the I2C bus and has the address 0b110111x, where x is set by the value on the ADDR_SEL input (see Tables 3I and 3J). The interface accepts byte-oriented block write and block read operations. An address byte (P) specifies the register address (Table 3B) as the byte position of the first register to write or read. Data bytes (registers) are accessed in sequential order from the lowest to the highest byte (most significant bit first, see Table 3K, 3L). Read and write block transfers can be stopped after any complete byte transfer. It is recommended to terminate the I2C read or write transfer after accessing byte #23 by sending a stop command.

For full electrical I2C compliance, it is recommended to use external pull-up resistors for SDATA and SCLK. The internal pull-up resistors have a size of 50kΩ typical.

Table 3I. I2C Device Slave Address ADDR_SEL = 0 (default)

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>R/W</th>
</tr>
</thead>
</table>

Table 3J. I2C Device Slave Address ADDR_SEL = 1

| 1 | 1 | 0 | 1 | 1 | 1 | 1 | R/W |

Table 3K. Block Write Operation

<table>
<thead>
<tr>
<th>Bit</th>
<th>1</th>
<th>2:8</th>
<th>9</th>
<th>10</th>
<th>11:18</th>
<th>19</th>
<th>20:27</th>
<th>28</th>
<th>29-36</th>
<th>37</th>
<th>...</th>
<th>...</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>START</td>
<td>Slave Address</td>
<td>W (0)</td>
<td>ACK</td>
<td>Address Byte P</td>
<td>ACK</td>
<td>Data Byte (P)</td>
<td>ACK</td>
<td>Data Byte (P+1)</td>
<td>ACK</td>
<td>Data Byte</td>
<td>ACK</td>
<td>STOP</td>
</tr>
<tr>
<td>Length (bits)</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3L. Block Read Operation

<table>
<thead>
<tr>
<th>Bit</th>
<th>1</th>
<th>2:8</th>
<th>9</th>
<th>10</th>
<th>11:18</th>
<th>19</th>
<th>20</th>
<th>21:27</th>
<th>28</th>
<th>29</th>
<th>30:37</th>
<th>38</th>
<th>39-46</th>
<th>47</th>
<th>...</th>
<th>...</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>START</td>
<td>Slave Address</td>
<td>W (0)</td>
<td>A C K</td>
<td>Address byte P</td>
<td>A C K</td>
<td>Repeated START</td>
<td>Slave address</td>
<td>R (1)</td>
<td>A C K</td>
<td>Data Byte (P)</td>
<td>A C K</td>
<td>Data Byte (P+1)</td>
<td>A C K</td>
<td>Data Byte</td>
<td>A C K</td>
<td>STOP</td>
</tr>
<tr>
<td>Length (bits)</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Absolute Maximum Ratings

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

<table>
<thead>
<tr>
<th>Item</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage, V_{CC}</td>
<td>3.63V</td>
</tr>
<tr>
<td>Inputs, V_I</td>
<td>0V to 2V, -0.5V to $V_{CC} + 0.5V$</td>
</tr>
<tr>
<td>XTAL_IN</td>
<td></td>
</tr>
<tr>
<td>Other Input</td>
<td></td>
</tr>
<tr>
<td>Outputs, I_O (LVPECL)</td>
<td></td>
</tr>
<tr>
<td>Continuous Current</td>
<td>50mA</td>
</tr>
<tr>
<td>Surge Current</td>
<td>100mA</td>
</tr>
<tr>
<td>Outputs, I_O (SDATA)</td>
<td>10mA</td>
</tr>
<tr>
<td>Outputs, I_O (LVDS)</td>
<td></td>
</tr>
<tr>
<td>Continuous Current</td>
<td>10mA</td>
</tr>
<tr>
<td>Surge Current</td>
<td>15mA</td>
</tr>
<tr>
<td>Package Thermal Impedance, θ_{JA}</td>
<td>32.4°C/W (0 mps)</td>
</tr>
<tr>
<td>Storage Temperature, T_{STG}</td>
<td>-65°C to 150°C</td>
</tr>
</tbody>
</table>

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, $V_{CC} = V_{CCO} = 3.3V \pm 5\%$, $V_{EE} = 0V$, $T_A = -40°C$ to 85°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}</td>
<td>Core Supply Voltage</td>
<td>3.135</td>
<td>3.3</td>
<td>3.465</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{CCA}</td>
<td>Analog Supply Voltage</td>
<td>$V_{CC} - 0.32$</td>
<td>3.3</td>
<td>V_{CC}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{CCO}</td>
<td>Output Supply Voltage</td>
<td>3.135</td>
<td>3.3</td>
<td>3.465</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{CCA}</td>
<td>Analog Supply Current</td>
<td>32</td>
<td>mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{EE}</td>
<td>Power Supply Current</td>
<td>LVPECL</td>
<td>225</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{CC}</td>
<td>Power Supply Current</td>
<td>LVDS</td>
<td>125</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{CCO}</td>
<td>Output Supply Current</td>
<td>LVDS</td>
<td>162</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4B. Power Supply DC Characteristics, $V_{CC} = V_{CCO} = 2.5V \pm 5\%$, $V_{EE} = 0V$, $T_A = -40°C$ to 85°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}</td>
<td>Core Supply Voltage</td>
<td>2.375</td>
<td>2.5</td>
<td>2.625</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{CCA}</td>
<td>Analog Supply Voltage</td>
<td>$V_{CC} - 0.28$</td>
<td>2.5</td>
<td>V_{CC}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{CCO}</td>
<td>Output Supply Voltage</td>
<td>2.375</td>
<td>2.5</td>
<td>2.625</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{CCA}</td>
<td>Analog Supply Current</td>
<td>28</td>
<td>mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{EE}</td>
<td>Power Supply Current</td>
<td>LVPECL</td>
<td>216</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{CC}</td>
<td>Power Supply Current</td>
<td>LVDS</td>
<td>122</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{CCO}</td>
<td>Output Supply Current</td>
<td>LVDS</td>
<td>160</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4C. LVCMOS/LVTTL DC Characteristics, $V_{CC} = V_{CCO} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $V_{EE} = 0V$, $T_A = -40^\circ C$ to $85^\circ C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IH}</td>
<td>Input High Voltage</td>
<td>$SCLK, \ SDATA, \ FSEL[1:0], \ CLK_SEL, \ ADDR_SEL$</td>
<td>$V_{CC} = 3.3V$</td>
<td>2</td>
<td>$V_{CC} + 0.3$</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CC} = 2.5V$</td>
<td>1.7</td>
<td>$V_{CC} + 0.3$</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Input Low Voltage</td>
<td>$SCLK, \ SDATA, \ CLK_SEL, \ ADDR_SEL$</td>
<td>$V_{CC} = 3.3V$</td>
<td>-0.3</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CC} = 2.5V$</td>
<td>-0.3</td>
<td>0.7</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>I_{IH}</td>
<td>Input High Current</td>
<td>$SCLK, SDATA, \ FSEL[1:0], \ CLK_SEL, \ ADDR_SEL$</td>
<td>$V_{CC} = V_{IN} = 3.465V \text{ or } 2.625V$</td>
<td>5</td>
<td>150</td>
<td>μA</td>
</tr>
<tr>
<td>I_{IL}</td>
<td>Input Low Current</td>
<td>$SCLK, SDATA, \ FSEL[1:0], \ CLK_SEL, \ ADDR_SEL$</td>
<td>$V_{CC} = V_{IN} = 3.465V \text{ or } 2.625V$</td>
<td>-150</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>V_{OH}</td>
<td>Output High Voltage; NOTE 1</td>
<td>$LOCK$</td>
<td>$V_{CC} = 3.465V$</td>
<td>2.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{CC} = 2.625V$</td>
<td>1.8</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Output Low Voltage; NOTE 1</td>
<td>$LOCK$</td>
<td>$V_{CC} = 3.465V \text{ or } 2.625V$</td>
<td>0.5</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1: Output terminated with 50Ω to $V_{CCO}/2$. See Parameter Measurement Information, *Output Load Test Circuit* diagrams.

Table 4D. Differential DC Characteristics, $V_{CC} = V_{CCO} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $V_{EE} = 0V$, $T_A = -40^\circ C$ to $85^\circ C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{IH}</td>
<td>Input High Current</td>
<td>$CLK, \ nCLK$</td>
<td>$V_{CC} = V_{IN} = 3.465V \text{ or } 2.625V$</td>
<td>150</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_{IL}</td>
<td>Input Low Current</td>
<td>$nCLK, \ CLK$</td>
<td>$V_{CC} = 3.465V \text{ or } 2.625V, V_{IN} = 0V$</td>
<td>-150</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>V_{PP}</td>
<td>Peak-to-Peak Voltage</td>
<td></td>
<td></td>
<td>0.15</td>
<td>1.3</td>
<td>V</td>
</tr>
<tr>
<td>V_{CMR}</td>
<td>Common Mode Input Voltage; NOTE 1</td>
<td></td>
<td></td>
<td>V_{EE}</td>
<td>$V_{CC} - 0.85$</td>
<td>V</td>
</tr>
</tbody>
</table>

NOTE 1: Common mode input voltage is at the cross point.

Table 4E. LVPECL DC Characteristics, $V_{CC} = V_{CCO} = 3.3V \pm 5\%$, $V_{EE} = 0V$, $T_A = -40^\circ C$ to $85^\circ C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OH}</td>
<td>Output High Voltage; NOTE 1</td>
<td>$V_{CC} \sim 1.1$</td>
<td>$V_{CCO} - 0.75$</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Output Low Voltage; NOTE 1</td>
<td>$V_{CC} \sim 2.0$</td>
<td>$V_{CCO} - 1.6$</td>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{SWING}</td>
<td>Peak-to-Peak Output Voltage Swing</td>
<td></td>
<td></td>
<td>0.6</td>
<td>1.0</td>
<td>V</td>
</tr>
</tbody>
</table>

NOTE 1: Outputs termination with 50Ω to $V_{CC} - 2V$.

© 2019 Renesas Electronics Corporation
Table 4F. LVPECL DC Characteristics, \(V_{CC} = V_{CCO} = 2.5V \pm 5\%, \, V_{EE} = 0V, \, T_{A} = -40^\circ C \) to 85°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{OH})</td>
<td>Output High Voltage; NOTE 1</td>
<td>(V_{CC} - 1.2)</td>
<td>(V_{CCO} - 0.75)</td>
<td>(V_{CC} - 2.0)</td>
<td>(V_{CC} - 1.5)</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Output Low Voltage; NOTE 1</td>
<td>(V_{CC} - 1.2)</td>
<td>(V_{CCO} - 0.75)</td>
<td>(V_{CC} - 2.0)</td>
<td>(V_{CC} - 1.5)</td>
<td>V</td>
</tr>
<tr>
<td>(V_{SWING})</td>
<td>Peak-to-Peak Output Voltage Swing</td>
<td>0.5</td>
<td>1.0</td>
<td>V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1: Outputs termination with 50Ω to \(V_{CC} - 2V \).

Table 4G. LVDS DC Characteristics, \(V_{CC} = V_{CCO} = 3.3V \pm 5\%, \, V_{EE} = 0V, \, T_{A} = -40^\circ C \) to 85°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{OD})</td>
<td>Differential Output Voltage</td>
<td>247</td>
<td>345</td>
<td>454</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>(\Delta V_{OD})</td>
<td>(V_{OD}) Magnitude Change</td>
<td>50</td>
<td>mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OS})</td>
<td>Offset Voltage</td>
<td>1.15</td>
<td>1.25</td>
<td>1.375</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(\Delta V_{OS})</td>
<td>(V_{OS}) Magnitude Change</td>
<td>50</td>
<td>mV</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4H. LVDS DC Characteristics, \(V_{CC} = V_{CCO} = 2.5V \pm 5\%, \, V_{EE} = 0V, \, T_{A} = -40^\circ C \) to 85°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{OD})</td>
<td>Differential Output Voltage</td>
<td>230</td>
<td>340</td>
<td>454</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>(\Delta V_{OD})</td>
<td>(V_{OD}) Magnitude Change</td>
<td>50</td>
<td>mV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{OS})</td>
<td>Offset Voltage</td>
<td>1.15</td>
<td>1.25</td>
<td>1.375</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(\Delta V_{OS})</td>
<td>(V_{OS}) Magnitude Change</td>
<td>50</td>
<td>mV</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Crystal Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode of Oscillation</td>
<td>Fundamental</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
<td>10</td>
<td>40</td>
<td>MHz</td>
<td></td>
</tr>
<tr>
<td>Load Capacitance ((C_{L}))</td>
<td></td>
<td>10</td>
<td>18</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>Equivalent Series Resistance (ESR)</td>
<td></td>
<td></td>
<td>50</td>
<td>Ω</td>
<td></td>
</tr>
</tbody>
</table>
AC Electrical Characteristics

Table 6A. PCI Express Jitter Specifications, \(V_{CC} = V_{CCO} = 3.3V \pm 5\% \) or \(2.5V \pm 5\% \), \(V_{EE} = 0V \), \(T_A = -40^\circ C \) to \(85^\circ C \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>PCIe Industry Specification</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_j) (PCIe Gen 1)</td>
<td>Phase Jitter Peak-to-Peak; NOTE 1, 4</td>
<td>(f = 100MHz, 25MHz) Crystal Input Evaluation Band: 0Hz - Nyquist (clock frequency/2)</td>
<td>8.3</td>
<td>13.2</td>
<td>86</td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>(I_{REFCLK_HF_RMS}) (PCIe Gen 2)</td>
<td>Phase Jitter RMS; NOTE 2, 4</td>
<td>(f = 100MHz, 25MHz) Crystal Input High Band: 1.5MHz - Nyquist (clock frequency/2)</td>
<td>0.78</td>
<td>1.35</td>
<td>3.1</td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>(I_{REFCLK_LF_RMS}) (PCIe Gen 2)</td>
<td>Phase Jitter RMS; NOTE 2, 4</td>
<td>(f = 100MHz, 25MHz) Crystal Input Low Band: 10kHz - 1.5MHz</td>
<td>0.05</td>
<td>0.10</td>
<td>3.0</td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>(I_{REFCLK_RMS}) (PCIe Gen 3)</td>
<td>Phase Jitter RMS; NOTE 3, 4</td>
<td>(f = 100MHz, 25MHz) Crystal Input Evaluation Band: 0Hz - Nyquist (clock frequency/2)</td>
<td>0.175</td>
<td>0.34</td>
<td>0.8</td>
<td></td>
<td>ps</td>
</tr>
</tbody>
</table>

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfm. The device will meet specifications after thermal equilibrium has been reached under these conditions. For additional information, refer to the *PCI Express Application Note* section in the datasheet.

NOTE 1: Peak-to-Peak jitter after applying system transfer function for the Common Clock Architecture. Maximum limit for PCI Express Gen 1 is 86ps peak-to-peak for a sample size of \(10^5 \) clock periods.

NOTE 2: RMS jitter after applying the two evaluation bands to the two transfer functions defined in the Common Clock Architecture and reporting the worst case results for each evaluation band. Maximum limit for PCI Express Generation 2 is 3.1ps RMS for \(I_{REFCLK_HF_RMS} \) (High Band) and 3.0ps RMS for \(I_{REFCLK_LF_RMS} \) (Low Band).

NOTE 3: RMS jitter after applying system transfer function for the common clock architecture. This specification is based on the *PCI Express Base Specification Revision 0.7, October 2009* and is subject to change pending the final release version of the specification.

NOTE 4: This parameter is guaranteed by characterization. Not tested in production.
Table 6B. AC Characteristics, $V_{CC} = V_{CCO} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$ $V_{EE} = 0V$, $T_{A} = -40^\circ C$ to $85^\circ C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_{\text{DIFF,IN}}$</td>
<td>Differential Input Frequency</td>
<td></td>
<td>10</td>
<td>312.5</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>f_{VCO}</td>
<td>VCO Frequency</td>
<td>$25MHz$ Crystal, $f_{\text{OUT}} = 100MHz$, Integration Range: $12kHz - 20MHz$</td>
<td>258</td>
<td>332</td>
<td></td>
<td>fs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$25MHz$ Crystal, $f_{\text{OUT}} = 125MHz$, Integration Range: $12kHz - 20MHz$</td>
<td>220</td>
<td>291</td>
<td></td>
<td>fs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$25MHz$ Crystal, $f_{\text{OUT}} = 125MHz$, Integration Range: $10kHz - 1MHz$</td>
<td>164</td>
<td>232</td>
<td></td>
<td>fs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$25MHz$ Crystal, $f_{\text{OUT}} = 156.25MHz$, Integration Range: $12kHz - 20MHz$</td>
<td>228</td>
<td>306</td>
<td></td>
<td>fs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$25MHz$ Crystal, $f_{\text{OUT}} = 156.25MHz$, Integration Range: $10kHz - 1MHz$</td>
<td>175</td>
<td>234</td>
<td></td>
<td>fs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$25MHz$ Crystal, $f_{\text{OUT}} = 250MHz$, Integration Range: $12kHz - 20MHz$</td>
<td>212</td>
<td>292</td>
<td></td>
<td>fs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$30.72MHz$ Crystal, $f_{\text{OUT}} = 491.52MHz$, Integration Range: $12kHz - 20MHz$</td>
<td>213</td>
<td>299</td>
<td></td>
<td>fs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$19.44MHz$ Crystal, $f_{\text{OUT}} = 622.08MHz$, Integration Range: $12kHz - 20MHz$</td>
<td>280</td>
<td>386</td>
<td></td>
<td>fs</td>
</tr>
<tr>
<td>$\delta f_{\text{(}\Phi)}$</td>
<td>RMS Phase Jitter, Random; NOTE 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t_{\text{sk(o)}}$</td>
<td>Output Skew; NOTE 2, 3</td>
<td>LVPECL Outputs $20% - 80%$, LVDS_SEL = 0</td>
<td></td>
<td>50</td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LVDS Outputs $20% - 80%$, LVDS_SEL = 1</td>
<td></td>
<td>50</td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>t_{R} / t_{F}</td>
<td>Output Rise/Fall Time</td>
<td>LVPECL Outputs $20% - 80%$, LVDS_SEL = 0</td>
<td>100</td>
<td>400</td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LVDS Outputs $20% - 80%$, LVDS_SEL = 1</td>
<td>100</td>
<td>400</td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>odc</td>
<td>Output Duty Cycle</td>
<td>$N > 3$ Output Divider; LVDS_SEL = 0 or 1</td>
<td>47</td>
<td>53</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$N \leq 3$ Output Divider; LVDS_SEL = 0 or 1</td>
<td>42</td>
<td>58</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>t_{LOCK}</td>
<td>PLL Lock Time; NOTE 3, 4</td>
<td>LOCK Output</td>
<td></td>
<td>20</td>
<td></td>
<td>ms</td>
</tr>
<tr>
<td>$t_{\text{TRANSITION}}$</td>
<td>Transition Time; NOTE 3, 4</td>
<td>LOCK Output</td>
<td></td>
<td>20</td>
<td></td>
<td>ms</td>
</tr>
</tbody>
</table>

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE 1: Refer to Phase Noise Plots.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the differential cross points.

NOTE 3: These parameters are guaranteed by characterization. Not tested in production.

NOTE 4: Refer to t_{LOCK} and $t_{\text{TRANSITION}}$ in Parameter Measurement Information.
Typical Phase Noise at 100MHz (3.3V)

![Graph showing typical phase noise at 100MHz (3.3V)]

Typical Phase Noise at 125MHz (3.3V)

![Graph showing typical phase noise at 125MHz (3.3V)]
Typical Phase Noise at 156.25MHz (3.3V)
Parameter Measurement Information

3.3V LVPECL Output Load AC Test Circuit

2.5V LVPECL Output Load AC Test Circuit

3.3V LVDS Output Load AC Test Circuit

2.5V LVDS Output Load AC Test Circuit

Differential Input Levels

RMS Phase Jitter

\[
\text{RMS Phase Jitter} = \sqrt{\frac{1}{2\pi f} \int_{t_1}^{t_2} \text{Power} \, df}
\]

\text{Area under curve defined by the offset frequency markers}
Parameter Measurement Information, continued

Output Skew

Output Duty Cycle/Pulse Width/Period

LVPECL Output Rise/Fall Time

LVDS Output Rise/Fall Time

Offset Voltage Setup

Differential Output Voltage Setup
Parameter Measurement Information, continued

![Diagram showing Lock Time & Transition Time](image)

Applications Information

Recommendations for Unused Input and Output Pins

Inputs:

LVCMOS Control Pins
All control pins have internal pullups or pulldowns; additional resistance is not required but can be added for additional protection. A 1kΩ resistor can be used.

CLK/nCLK Inputs
For applications not requiring the use of the differential input, both CLK and nCLK can be left floating. Though not required, but for additional protection, a 1kΩ resistor can be tied from CLK to ground.

Crystal Inputs
For applications not requiring the use of the crystal oscillator input, both XTAL_IN and XTAL_OUT can be left floating. Though not required, but for additional protection, a 1kΩ resistor can be tied from XTAL_IN to ground.

Outputs:

LVPECL Outputs
All unused LVPECL output pairs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.

LVDS Outputs
All unused LVDS output pairs can be either left floating or terminated with 100Ω across. If they are left floating, there should be no trace attached.
Wiring the Differential Input to Accept Single-Ended Levels

Figure 1 shows how a differential input can be wired to accept single ended levels. The reference voltage $V_1 = \frac{V_{CC}}{2}$ is generated by the bias resistors R1 and R2. The bypass capacitor (C1) is used to help filter noise on the DC bias. This bias circuit should be located as close to the input pin as possible. The ratio of R1 and R2 might need to be adjusted to position the V_1 in the center of the input voltage swing. For example, if the input clock swing is 2.5V and $V_{CC} = 3.3V$, R1 and R2 value should be adjusted to set V_1 at 1.25V. The values below are for when both the single ended swing and V_{CC} are at the same voltage. This configuration requires that the sum of the output impedance of the driver (R_o) and the series resistance (R_s) equals the transmission line impedance. In addition, matched termination at the input will attenuate the signal in half. This can be done in one of two ways. First, R3 and R4 in parallel should equal the transmission line impedance. For most 50Ω applications, R3 and R4 can be 100Ω. The values of the resistors can be increased to reduce the loading for slower and weaker LVCMOS driver. When using single-ended signaling, the noise rejection benefits of differential signaling are reduced. Even though the differential input can handle full rail LVCMOS signaling, it is recommended that the amplitude be reduced. The datasheet specifies a lower differential amplitude, however this only applies to differential signals. For single-ended applications, the swing can be larger, however V_{IL} cannot be less than -0.3V and V_{IH} cannot be more than $V_{CC} + 0.3V$. Though some of the recommended components might not be used, the pads should be placed in the layout. They can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a differential signal.

![Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels](image)

Figure 1. Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels
Overdriving the XTAL Interface

The XTAL_IN input can be overdriven by an LVCMOS driver or by one side of a differential driver through an AC coupling capacitor. The XTAL_OUT pin can be left floating. The amplitude of the input signal should be between 500mV and 1.8V and the slew rate should not be less than 0.2V/nS. For 3.3V LVCMOS inputs, the amplitude must be reduced from full swing to at least half the swing in order to prevent signal interference with the power rail and to reduce internal noise. Figure 2A shows an example of the interface diagram for a high speed 3.3V LVCMOS driver. This configuration requires that the sum of the output impedance of the driver (Ro) and the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most 50Ω applications, R1 and R2 can be 100Ω. This can also be accomplished by removing R1 and changing R2 to 50Ω. The values of the resistors can be increased to reduce the loading for a slower and weaker LVCMOS driver. Figure 2B shows an example of the interface diagram for an LVPECL driver. This is a standard LVPECL termination with one side of the driver feeding the XTAL_IN input. It is recommended that all components in the schematics be placed in the layout. Though some components might not be used, they can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a quartz crystal as the input.

Figure 2A. General Diagram for LVCMOS Driver to XTAL Input Interface

Figure 2B. General Diagram for LVPECL Driver to XTAL Input Interface
3.3V Differential Clock Input Interface

The CLK/nCLK accepts LVDS, LVPECL, HCSL and other differential signals. Both \(V_{\text{SWING}} \) and \(V_{\text{OH}} \) must meet the \(V_{\text{PP}} \) and \(V_{\text{CMR}} \) input requirements. Figures 3A to 3D show interface examples for the CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements.

Figure 3A. CLK/nCLK Input Driven by a 3.3V LVPECL Driver

Figure 3B. CLK/nCLK Input Driven by a 3.3V LVPECL Driver

Figure 3C. CLK/nCLK Input Driven by a 3.3V HCSL Driver

Figure 3D. CLK/nCLK Input Driven by a 3.3V LVDS Driver
2.5V Differential Clock Input Interface

The CLK/nCLK accepts LVDS, LVPECL, HCSL and other differential signals. Both \(V_{SWING} \) and \(V_{OH} \) must meet the \(V_{PP} \) and \(V_{CMR} \) input requirements. Figures 4A to 4D show interface examples for the CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements.
LVDS Driver Termination

For a general LVDS interface, the recommended value for the termination impedance \((Z_T)\) is between 90\(\Omega\) and 132\(\Omega\). The actual value should be selected to match the differential impedance \((Z_0)\) of your transmission line. A typical point-to-point LVDS design uses a 100\(\Omega\) parallel resistor at the receiver and a 100\(\Omega\) differential transmission-line environment. In order to avoid any transmission-line reflection issues, the components should be surface mounted and must be placed as close to the receiver as possible. IDT offers a full line of LVDS compliant devices with two types of output structures: current source and voltage source. The standard termination schematic as shown in Figure 5A can be used with either type of output structure. Figure 5B, which can also be used with both output types, is an optional termination with center tap capacitance to help filter common mode noise. The capacitor value should be approximately 50pF. If using a non-standard termination, it is recommended to contact IDT and confirm if the output structure is current source or voltage source type. In addition, since these outputs are LVDS compatible, the input receiver's amplitude and common-mode input range should be verified for compatibility with the output.

Termination for 3.3V LVPECL Outputs

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

The differential outputs are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50\(\Omega\) transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. Figures 6A and 6B show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.
Termination for 2.5V LVPECL Outputs

Figure 7A and Figure 7B show examples of termination for 2.5V LVPECL driver. These terminations are equivalent to terminating 50Ω to $V_{CCO} - 2V$. For $V_{CCO} = 2.5V$, the $V_{CCO} - 2V$ is very close to ground level. The R3 in Figure 7B can be eliminated and the termination is shown in Figure 7C.
VFQFN EPAD Thermal Release Path

In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in Figure 8. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts.

While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as “heat pipes”. The number of vias (i.e. “heat pipes”) are application specific and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13milis (0.30 to 0.33mm) with 1oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a guideline only. For further information, please refer to the Application Note on the Surface Mount Assembly of Amkor’s Thermally/Electrically Enhance Leadframe Base Package, Amkor Technology.

Figure 8. P.C. Assembly for Exposed Pad Thermal Release Path – Side View (drawing not to scale)
In order to achieve the best possible filtering, it is recommended that the placement of the filter components be on the device side of the PCB as close to the power pins as possible. If space is limited, the 0.1μF capacitor in each power pin filter should be placed on the device side of the PCB and the other components can be placed on the opposite side. Power supply filter recommendations are a general guideline to be used for reducing external noise from coupling into the devices.

The \(V_{CC \text{ and } V_{CCO}} \) filters start to attenuate noise at approximately 10kHz. If a specific frequency noise component is known, such as switching power supplies frequencies, it is recommended that component values be adjusted and if required, additional filtering be added. Additionally, good general design practices for power plane voltage stability suggests adding bulk capacitance in the local area of all devices.
Figure 9. IDT8T49N008I Application Schematic
PCI Express Application Note

PCI Express jitter analysis methodology models the system response to reference clock jitter. The block diagram below shows the most frequently used Common Clock Architecture in which a copy of the reference clock is provided to both ends of the PCI Express Link.

In the jitter analysis, the transmit (Tx) and receive (Rx) serdes PLLs are modeled as well as the phase interpolator in the receiver. These transfer functions are called H1, H2, and H3 respectively. The overall system transfer function at the receiver is:

\[H_t(s) = H_3(s) \times [H_1(s) - H_2(s)] \]

The jitter spectrum seen by the receiver is the result of applying this system transfer function to the clock spectrum X(s) and is:

\[Y(s) = X(s) \times H_3(s) \times [H_1(s) - H_2(s)] \]

In order to generate time domain jitter numbers, an inverse Fourier Transform is performed on \(X(s)H_3(s) \times [H_1(s) - H_2(s)] \).

For PCI Express Gen 1, one transfer function is defined and the evaluation is performed over the entire spectrum: DC to Nyquist (e.g. for a 100MHz reference clock: 0Hz – 50MHz) and the jitter result is reported in peak-peak.

For PCI Express Gen 2, two transfer functions are defined with 2 evaluation ranges and the final jitter number is reported in RMS. The two evaluation ranges for PCI Express Gen 2 are 10kHz – 1.5MHz (Low Band) and 1.5MHz – Nyquist (High Band). The plots show the individual transfer functions as well as the overall transfer function \(H_t \).

For PCI Express Gen 3, one transfer function is defined and the evaluation is performed over the entire spectrum. The transfer function parameters are different from Gen 1 and the jitter result is reported in RMS.

For a more thorough overview of PCI Express jitter analysis methodology, please refer to IDT Application Note PCI Express Reference Clock Requirements.
LVPECL Power Considerations

This section provides information on power dissipation and junction temperature for the IDT8T49N008I. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the IDT8T49N008I is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for \(V_{CC} = 3.465V \), which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)\(_{\text{MAX}}\) = \(V_{CC,\text{MAX}} \times I_{EE,\text{MAX}} = 3.465V \times 225mA = 779.625mW \)
- Power (outputs)\(_{\text{MAX}}\) = 31.55mW/Loaded Output pair

 If all outputs are loaded, the total power is \(8 \times 31.55mW = 252.4mW \)

Total Power\(_{\text{MAX}}\) (3.465V, with all outputs switching) = 779.625W + 252.4mW = 1032.025W

2. Junction Temperature.

Junction temperature, \(T_j \), is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, \(T_j \), to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for \(T_j \) is as follows:

\[
T_j = \theta_{JA} \times P_{d_{\text{total}}} + T_A
\]

\(\theta_{JA} \) = Junction-to-Ambient Thermal Resistance

\(P_{d_{\text{total}}} \) = Total Device Power Dissipation (example calculation is in section 1 above)

\(T_A \) = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance \(\theta_{JA} \) must be used. Assuming no air flow and a multi-layer board, the appropriate value is 32.4°C/W per Table 7 below.

Therefore, \(T_j \) for an ambient temperature of 85°C with all outputs switching is:

\[
85°C + 1.032W \times 32.4°C/W = 118.4°C
\]

This calculation is only an example. \(T_j \) will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 7. Thermal Resistance \(\theta_{JA} \) for 40-Lead VFQFN, Forced Convection

<table>
<thead>
<tr>
<th>Meters per Second</th>
<th>0</th>
<th>1</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Layer PCB, JEDEC Standard Test Boards</td>
<td>32.4°C/W</td>
<td>25.7°C/W</td>
<td>23.4°C/W</td>
</tr>
</tbody>
</table>
3. Calculations and Equations.
The purpose of this section is to calculate the power dissipation for the LVPECL output pair. LVPECL output driver circuit and termination are shown in Figure 10.

To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of VCCO – 2V.

- For logic high, \(V_{OUT} = V_{OH_MAX} = V_{CCO_MAX} - 0.75V \)
 \((V_{CCO_MAX} - V_{OH_MAX}) = 0.75V \)
- For logic low, \(V_{OUT} = V_{OL_MAX} = V_{CCO_MAX} - 1.6V \)
 \((V_{CCO_MAX} - V_{OL_MAX}) = 1.6V \)

\[
\begin{align*}
P_{d_H} &= \left[\frac{(V_{OH_MAX} - (V_{CCO_MAX} - 2V))/R_L}{V_{CCO_MAX} - V_{OH_MAX}} \right] \times \frac{(V_{CCO_MAX} - V_{OH_MAX})}{R_L} \times \frac{(V_{CCO_MAX} - V_{OH_MAX})}{R_L} = \left[\frac{(2V - (V_{CCO_MAX} - V_{OH_MAX}))}{50\Omega} \right] \times 0.75V = 18.75\text{mW} \\
P_{d_L} &= \left[\frac{(V_{OL_MAX} - (V_{CCO_MAX} - 2V))/R_L}{V_{CCO_MAX} - V_{OL_MAX}} \right] \times \frac{(V_{CCO_MAX} - V_{OL_MAX})}{R_L} \times \frac{(V_{CCO_MAX} - V_{OL_MAX})}{R_L} = \left[\frac{(2V - (V_{CCO_MAX} - V_{OL_MAX}))}{50\Omega} \right] \times 1.6V = 12.80\text{mW} \\
\end{align*}
\]

Total Power Dissipation per output pair = \(P_{d_H} + P_{d_L} = 31.55\text{mW} \)

![Figure 10. LVPECL Driver Circuit and Termination](image-url)
LVDS Power Considerations

This section provides information on power dissipation and junction temperature for the IDT8T49N008I. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the IDT8T49N008I is the sum of the core power plus the analog power plus the power dissipated in the load(s). The following is the power dissipation for \(V_{CC} = 3.3V \pm 5\% = 3.465V \), which gives worst case results.

- Power (core)\(_{MAX}\) = \(V_{CC,MAX} \cdot (I_{CC,MAX} + I_{CCA,MAX}) = 3.465V \cdot (125mA + 32mA) = 544.005mW \)
- Power (outputs)\(_{MAX}\) = \(V_{CCO,MAX} \cdot I_{CCO,MAX} = 3.465V \cdot 162mA = 561.33mW \)

Total Power\(_{MAX}\) = 544.005mW + 561.33mW = 1105.335mW

2. Junction Temperature.

Junction temperature, \(T_j \), is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, \(T_j \), to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for \(T_j \) is as follows:

\[
T_j = \theta_{JA} \cdot P_{d_{total}} + T_A
\]

\(\theta_{JA} \) = Junction-to-Ambient Thermal Resistance

\(P_{d_{total}} \) = Total Device Power Dissipation (example calculation is in section 1 above)

\(T_A \) = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance \(\theta_{JA} \) must be used. Assuming no air flow and a multi-layer board, the appropriate value is 32.4°C/W per Table 8 below.

Therefore, \(T_j \) for an ambient temperature of 85°C with all outputs switching is:

85°C + 1.105W * 32.4°C/W = 120.8°C. This is below the limit of 125°C.

This calculation is only an example. \(T_j \) will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 8. Thermal Resistance \(\theta_{JA} \) for 40-Lead VFQFN, Forced Convection

<table>
<thead>
<tr>
<th>Meters per Second</th>
<th>0</th>
<th>1</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Layer PCB, JEDEC Standard Test Boards</td>
<td>32.4°C/W</td>
<td>25.7°C/W</td>
<td>23.4°C/W</td>
</tr>
</tbody>
</table>
Reliability Information

Table 9. θ_{JA} vs. Air Flow Table for a 40-Lead VFQFN

<table>
<thead>
<tr>
<th>Meters per Second</th>
<th>0</th>
<th>1</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Layer PCB, JEDEC Standard Test Boards</td>
<td>32.4°C/W</td>
<td>25.7°C/W</td>
<td>23.4°C/W</td>
</tr>
</tbody>
</table>

Transistor Count

The transistor count for IDT8T49N008I is: 26,856
40-Lead VFQFN Package Outline and Package Dimensions
40-Lead VFQFN Package Outline and Package Dimensions, continued

NOTES:
1. Dimensions & tolerances conform to ASME Y14.5M-1994

<table>
<thead>
<tr>
<th>Dimension</th>
<th>MIN</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.65</td>
<td>4.65</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

VARIATION:
- V10-5: with the exception of 0 & 2
- V12-5:

- A: Applies only to terminals 5, 6, 7, 8, 9, and 10.
- B: Applies to exposed pad and terminals' exposed area.
- C: Exact shape and size of this feature is optional.
- D: For usage information, mark or other feature on the top surface of the package.
- E: The pin # identifier must exist on the top surface of the package.
- F: Between 02 and 03, one terminal is connected to the package.
- G: Dimension B applies to plated terminal and is measured from the terminal to the package.

REFERENCES:

- ASME Y14.5M-1994
- Integrated Device Technology, Inc.
Ordering Information

Table 10. Ordering Information

<table>
<thead>
<tr>
<th>Part/Order Number</th>
<th>Marking</th>
<th>Package</th>
<th>Shipping Packaging</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>8T49N008A-dddNLGI</td>
<td>IDT8T49N008A-dddNLGI</td>
<td>“Lead-Free” 40-Lead VFQFN</td>
<td>Tray</td>
<td>-40°C to 85°C</td>
</tr>
<tr>
<td>8T49N008A-dddNLGI8</td>
<td>IDT8T49N008A-dddNLGI8</td>
<td>“Lead-Free” 40-Lead VFQFN</td>
<td>Tape & Reel</td>
<td>-40°C to 85°C</td>
</tr>
</tbody>
</table>

NOTE: For the specific -ddd order codes, refer to the *Programmable FemtoClock® NG Product Ordering Guide* document.
Revision History Sheet

<table>
<thead>
<tr>
<th>Rev</th>
<th>Table</th>
<th>Page</th>
<th>Description of Change</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>1</td>
<td>Pin Assignment - repositioned pin numbers (11-20).</td>
<td>4/18/12</td>
</tr>
<tr>
<td>A</td>
<td>T10</td>
<td>36</td>
<td>Changed footer part/order number from IDT8T49N008BNLGI to IDT8T49N008ANLGI. Ordering Information Table - changed Shipping Packaging from 1000 Tape & Reel to 5000 Tape & Reel.</td>
<td>4/23/12</td>
</tr>
<tr>
<td>A</td>
<td>T10</td>
<td>11, 38</td>
<td>Changed name of the IDT8T49N00xI Programmable FemtoClock® NG Product Ordering Information document to Programmable FemtoClock® Ordering Product Information. Deleted quantity from Tape & Reel, Deleted Lead Free note.</td>
<td>8/21/13</td>
</tr>
<tr>
<td>A</td>
<td>T10</td>
<td>1</td>
<td>Changed title to Programmable FemtoClock® NG LVPECL/LVDS Clock Generator with 8-Outputs. Changed text from 'Programmable FemtoClock® Ordering Product Information' to 'Programmable FemtoClock® NG Product Ordering Guide'. Changed Note from 'Programmable FemtoClock® Ordering Product Information' to 'Programmable FemtoClock® NG Product Ordering Guide'.</td>
<td>9/26/13</td>
</tr>
<tr>
<td>A</td>
<td>T5</td>
<td>14</td>
<td>Changed the min load capacitance from 12pF to 10pF</td>
<td>10/15/13</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td>Corrected part number in the footer pages from IDT8T49N00BNLGI to IDT8T49N00ANLGI</td>
<td>2/13/14</td>
</tr>
</tbody>
</table>
Notice

1. Descriptions of circuits, software, and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades. "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantation; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of micropoint computer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2019 Renesas Electronics Corporation. All rights reserved.