Features/Benefits

- ICS91730 is a Spread Spectrum Clock targeted for Mobile PC and LCD panel applications that generates an EMI-optimized clock signal (EMI peak reduction of 7-14 dB on 3rd-19th harmonics) through use of Spread Spectrum techniques.
- ICS91730 focuses on the lower input frequency range of 14.318 to 80.00 MHz with a spread modulation of 20kHz to 40kHz.

Specifications

- Supply Voltages: VDD = 3.3V ±0.3V
- Frequency range: 14.318 MHz ≤Fin ≥ 80 MHz
- Cyc to Cyc jitter: <150ps
- Output duty cycle 45-55%
- 0°C to +85°C operation
- 8-pin SOIC
- Reference input

Pin Configuration

<table>
<thead>
<tr>
<th>Pin</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLKN</td>
<td>Input</td>
</tr>
<tr>
<td>VDD</td>
<td>Power supply</td>
</tr>
<tr>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>SCLK</td>
<td>Input</td>
</tr>
<tr>
<td>SDATA</td>
<td>Input</td>
</tr>
<tr>
<td>PD#</td>
<td>Input</td>
</tr>
<tr>
<td>CLKOUT</td>
<td>Output</td>
</tr>
<tr>
<td>REF_OUT/FS_IN1</td>
<td>Output</td>
</tr>
</tbody>
</table>

8 Pin SOIC
* Internal Pull-Up Resistor

Functionality

<table>
<thead>
<tr>
<th>Fsin_1</th>
<th>MHz</th>
<th>Spread % default</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14.318 MHz in --> 27MHz out</td>
<td>-0.8 down spread</td>
</tr>
<tr>
<td>1</td>
<td>27.00MHz in --> 27.00MHz out</td>
<td>-1.25 down spread</td>
</tr>
</tbody>
</table>

Block Diagram
Pin Descriptions

<table>
<thead>
<tr>
<th>PIN #</th>
<th>PIN NAME</th>
<th>PIN TYPE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CLKN</td>
<td>PWR</td>
<td>Input for reference clock.</td>
</tr>
<tr>
<td>2</td>
<td>VDD</td>
<td>IN</td>
<td>Power supply, nominal 3.3V</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>OUT</td>
<td>Ground pin.</td>
</tr>
<tr>
<td>4</td>
<td>CLKOUT</td>
<td>I/O</td>
<td>Un-modulated 3.3V reference clock output.</td>
</tr>
<tr>
<td>5</td>
<td>REF_OUT/FS_IN1*</td>
<td>I/O</td>
<td>Frequency select latch input. Refer to the functionality table.</td>
</tr>
<tr>
<td>6</td>
<td>SDATA</td>
<td>PWR</td>
<td>Data pin for SMBus circuitry, 5V tolerant.</td>
</tr>
<tr>
<td>7</td>
<td>SCLK</td>
<td>PWR</td>
<td>Clock pin of SMBus circuitry, 5V tolerant.</td>
</tr>
<tr>
<td>8</td>
<td>PD#*</td>
<td>PWR</td>
<td>Asynchronous active low input pin, with 120Kohm internal pull-up resistor, used to power down the device. The internal clocks are disabled and the VCO and the crystal are stopped.</td>
</tr>
</tbody>
</table>

* Internal Pull-Up Resistor ** Internal Pull-Down Resistor
Table 1: Frequency Configuration (see I2C Byte0)

<table>
<thead>
<tr>
<th>FS4</th>
<th>FS3</th>
<th>FS2</th>
<th>FS1</th>
<th>FS0</th>
<th>Sprd Type</th>
<th>Sprd %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DOWN</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SPREAD (-)</td>
<td>0.80</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>CENTER</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SPD (+/-)</td>
<td>1.25</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>DOWN</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SPREAD (-)</td>
<td>2.00</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>CENTER</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SPD (+/-)</td>
<td>1.00</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>DOWN</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SPREAD (-)</td>
<td>1.00</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>CENTER</td>
<td>-0.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SPD (+/-)</td>
<td>+/-0.3</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>DOWN</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SPREAD (-)</td>
<td>1.75</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>CENTER</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SPD (+/-)</td>
<td>2.50</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>DOWN</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SPREAD (-)</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>CENTER</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SPD (+/-)</td>
<td>0.50</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>CENTER</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SPD (+/-)</td>
<td>1.00</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>CENTER</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SPD (+/-)</td>
<td>1.50</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>CENTER</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SPD (+/-)</td>
<td>1.00</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>CENTER</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SPD (+/-)</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Above is the hard coded 5 bit (32 entry) ROM table.

FS3:0 are ONLY accessible through I2C software programming bits (byte0 bits5:7). FS4 can also be decoded from FS_IN1 latched input hardware pins.

FS_IN1 → FS4. Upon power-up the default is to use hardware selection of FS_IN1 latched value.

FS3 = 0, FS2 = 0, FS1 = 0, FS0 = 1 upon power-up (refer to the functionality table on page 1).

To access non-default spread entries in the ROM, byte0 programming should be used. In order to change the power up default of FS_IN1 = 1 (-1.25% down spread) to any other spread % entry, first change byte0bit 0 to software selection by switching this bit to a ‘1’ and then program the desired percentage by changing byte0 bits 7:3.
General SMBus Serial Interface Information

How to Write
• Controller (host) sends a start bit
• Controller (host) sends the write address
• IDT clock will acknowledge
• Controller (host) sends the beginning byte location = N
• IDT clock will acknowledge
• Controller (host) sends the byte count = X
• IDT clock will acknowledge
• Controller (host) starts sending Byte N through Byte N+X-1
• IDT clock will acknowledge each byte one at a time
• Controller (host) sends a Stop bit

How to Read
• Controller (host) will send a start bit
• Controller (host) sends the write address
• IDT clock will acknowledge
• Controller (host) sends the beginning byte location = N
• IDT clock will acknowledge
• Controller (host) will send a separate start bit
• Controller (host) sends the read address
• IDT clock will acknowledge
• IDT clock will send the data byte count = X
• IDT clock sends Byte N+X-1
• IDT clock sends Byte 0 through Byte X (if X(H) was written to Byte 8)
• Controller (host) will need to acknowledge each byte
• Controller (host) will send a not acknowledge bit
• Controller (host) will send a stop bit

Index Block Write Operation

<table>
<thead>
<tr>
<th>Controller (Host)</th>
<th>IDT (Slave/Receiver)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T starT bit</td>
<td></td>
</tr>
<tr>
<td>Slave Address</td>
<td>ACK</td>
</tr>
<tr>
<td>WR Write</td>
<td>ACK</td>
</tr>
<tr>
<td>Beginning Byte = N</td>
<td>ACK</td>
</tr>
<tr>
<td>Data Byte Count = X</td>
<td>ACK</td>
</tr>
<tr>
<td>Beginning Byte N</td>
<td>ACK</td>
</tr>
<tr>
<td>O</td>
<td>ACK</td>
</tr>
<tr>
<td>O</td>
<td>ACK</td>
</tr>
<tr>
<td>O</td>
<td>ACK</td>
</tr>
<tr>
<td>Byte N + X - 1</td>
<td>ACK</td>
</tr>
<tr>
<td>P stop bit</td>
<td></td>
</tr>
</tbody>
</table>

Index Block Read Operation

<table>
<thead>
<tr>
<th>Controller (Host)</th>
<th>IDT (Slave/Receiver)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T starT bit</td>
<td></td>
</tr>
<tr>
<td>Slave Address</td>
<td>ACK</td>
</tr>
<tr>
<td>WR Write</td>
<td>ACK</td>
</tr>
<tr>
<td>Beginning Byte = N</td>
<td>ACK</td>
</tr>
<tr>
<td>RT Repeat starT</td>
<td>ACK</td>
</tr>
<tr>
<td>Slave Address</td>
<td>ACK</td>
</tr>
<tr>
<td>RD Read</td>
<td>ACK</td>
</tr>
<tr>
<td>Data Byte Count = X</td>
<td>ACK</td>
</tr>
<tr>
<td>Beginning Byte N</td>
<td>ACK</td>
</tr>
<tr>
<td>X Byte</td>
<td></td>
</tr>
<tr>
<td>N Not acknowledge</td>
<td></td>
</tr>
<tr>
<td>P stop bit</td>
<td></td>
</tr>
</tbody>
</table>

Read Address	Write Address
D5(H) | D4(H)
Byte 0

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Name</th>
<th>Control Function</th>
<th>Type</th>
<th>Bit Control</th>
<th>PWD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 7</td>
<td>FS0</td>
<td>Spread/FS0</td>
<td>RW</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Bit 6</td>
<td>FS1</td>
<td>Spread/FS1</td>
<td>RW</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bit 5</td>
<td>FS2</td>
<td>Spread/FS2</td>
<td>RW</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bit 4</td>
<td>FS3</td>
<td>Spread/FS3</td>
<td>RW</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bit 3</td>
<td>FS4</td>
<td>FS4</td>
<td>RW</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bit 2</td>
<td>PD# Tri_Safe</td>
<td>PD# Tri_Safe</td>
<td>RW</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bit 1</td>
<td>Spread Enable</td>
<td>Spread Enable</td>
<td>RW</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bit 0</td>
<td>HW/SW Control</td>
<td>Spread Spectrum Control</td>
<td>RW</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Spread Percentage: See Table 1
- These are I2C bits only

Byte 1

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Name</th>
<th>Control Function</th>
<th>Type</th>
<th>Bit Control</th>
<th>PWD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 7</td>
<td>REF_OUT</td>
<td>REF_OUT_Enable</td>
<td>RW</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Bit 6</td>
<td>REF_OUT</td>
<td>Slew Rate REF-OUT</td>
<td>RW</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Bit 5</td>
<td>FS-IN_1</td>
<td>FS-IN_1 Readback</td>
<td>R</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Bit 4</td>
<td>(Reserved)</td>
<td>(Reserved)</td>
<td>R</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Bit 3</td>
<td>CLK_OUT</td>
<td>Slew Rate CLK-OUT</td>
<td>RW</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Bit 2</td>
<td>CLK_OUT</td>
<td>CLK_OUT_Enable</td>
<td>RW</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Bit 1</td>
<td>(Reserved)</td>
<td>(Reserved)</td>
<td>R</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Bit 0</td>
<td>(Reserved)</td>
<td>(Reserved)</td>
<td>R</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

Byte 2

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Name</th>
<th>Control Function</th>
<th>Type</th>
<th>Bit Control</th>
<th>PWD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 7</td>
<td>x</td>
<td>(Reserved)</td>
<td>RW</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Bit 6</td>
<td>x</td>
<td>(Reserved)</td>
<td>RW</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Bit 5</td>
<td>x</td>
<td>(Reserved)</td>
<td>RW</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Bit 4</td>
<td>x</td>
<td>(Reserved)</td>
<td>RW</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Bit 3</td>
<td>x</td>
<td>(Reserved)</td>
<td>RW</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Bit 2</td>
<td>x</td>
<td>(Reserved)</td>
<td>RW</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Bit 1</td>
<td>x</td>
<td>(Reserved)</td>
<td>RW</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Bit 0</td>
<td>x</td>
<td>(Reserved)</td>
<td>RW</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Byte 3

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Name</th>
<th>Control Function</th>
<th>Type</th>
<th>Bit Control</th>
<th>PWD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 7</td>
<td>X</td>
<td>(Reserved)</td>
<td>RW</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Bit 6</td>
<td>X</td>
<td>(Reserved)</td>
<td>RW</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Bit 5</td>
<td>X</td>
<td>(Reserved)</td>
<td>RW</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Bit 4</td>
<td>X</td>
<td>(Reserved)</td>
<td>RW</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Bit 3</td>
<td>x</td>
<td>(Reserved)</td>
<td>RW</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Bit 2</td>
<td>X</td>
<td>(Reserved)</td>
<td>RW</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Bit 1</td>
<td>X</td>
<td>(Reserved)</td>
<td>RW</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Bit 0</td>
<td>X</td>
<td>(Reserved)</td>
<td>RW</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Byte 4</td>
<td>Affected Pin</td>
<td>Type</td>
<td>Bit Control</td>
<td>PWD</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>------</td>
<td>-------------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>Pin #</td>
<td>Name</td>
<td>Control Function</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bit 7</td>
<td>X (Reserved)</td>
<td>(Reserved)</td>
<td>RW</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bit 6</td>
<td>X (Reserved)</td>
<td>(Reserved)</td>
<td>RW</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bit 5</td>
<td>X (Reserved)</td>
<td>(Reserved)</td>
<td>RW</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bit 4</td>
<td>X (Reserved)</td>
<td>(Reserved)</td>
<td>RW</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bit 3</td>
<td>X (Reserved)</td>
<td>(Reserved)</td>
<td>RW</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bit 2</td>
<td>X (Reserved)</td>
<td>(Reserved)</td>
<td>RW</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bit 1</td>
<td>X (Reserved)</td>
<td>(Reserved)</td>
<td>RW</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bit 0</td>
<td>X (Reserved)</td>
<td>(Reserved)</td>
<td>RW</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Byte 5</th>
<th>Affected Pin</th>
<th>Type</th>
<th>Bit Control</th>
<th>PWD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin #</td>
<td>Name</td>
<td>Control Function</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Bit 7</td>
<td>X (Reserved)</td>
<td>(Reserved)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bit 6</td>
<td>X (Reserved)</td>
<td>(Reserved)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bit 5</td>
<td>X (Reserved)</td>
<td>(Reserved)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bit 4</td>
<td>X (Reserved)</td>
<td>(Reserved)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bit 3</td>
<td>X (Reserved)</td>
<td>(Reserved)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bit 2</td>
<td>X (Reserved)</td>
<td>(Reserved)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bit 1</td>
<td>X (Reserved)</td>
<td>(Reserved)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bit 0</td>
<td>X (Reserved)</td>
<td>(Reserved)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Byte 6</th>
<th>Affected Pin</th>
<th>Type</th>
<th>Bit Control</th>
<th>PWD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin #</td>
<td>Name</td>
<td>Control Function</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Bit 7</td>
<td>X Revision ID Bit 3</td>
<td>(Reserved)</td>
<td>R</td>
<td>-</td>
</tr>
<tr>
<td>Bit 6</td>
<td>X Revision ID Bit 2</td>
<td>(Reserved)</td>
<td>R</td>
<td>-</td>
</tr>
<tr>
<td>Bit 5</td>
<td>X Revision ID Bit 1</td>
<td>(Reserved)</td>
<td>R</td>
<td>-</td>
</tr>
<tr>
<td>Bit 4</td>
<td>X Revision ID Bit 0</td>
<td>(Reserved)</td>
<td>R</td>
<td>-</td>
</tr>
<tr>
<td>Bit 3</td>
<td>X Vendor ID Bit 3</td>
<td>(Reserved)</td>
<td>R</td>
<td>-</td>
</tr>
<tr>
<td>Bit 2</td>
<td>X Vendor ID Bit 2</td>
<td>(Reserved)</td>
<td>R</td>
<td>-</td>
</tr>
<tr>
<td>Bit 1</td>
<td>X Vendor ID Bit 1</td>
<td>(Reserved)</td>
<td>R</td>
<td>-</td>
</tr>
<tr>
<td>Bit 0</td>
<td>X Vendor ID Bit 0</td>
<td>(Reserved)</td>
<td>R</td>
<td>-</td>
</tr>
</tbody>
</table>
Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the ICS91730. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

Supply Voltage 3.7 V
Voltage on any pin with respect to GND ... -0.5 to +3.7 V
Storage Temperature -55°C to +125°C
Power Dissipation 0.5 W

Electrical Characteristics—Input/Supply/Common Output Parameters

\[T_A = 0 - 85°C; \text{Supply Voltage } V_{DD} = 3.3 \text{ V } +/-5\% \]

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input High Voltage</td>
<td>V_{IH}</td>
<td>2</td>
<td>V_{DD} + 0.3 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Low Voltage</td>
<td>V_{IL}</td>
<td>V_{SS} - 0.3</td>
<td>0.8 V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input High Current</td>
<td>I_{IH}</td>
<td>V_{IN} = V_{DD}</td>
<td>-5 mA</td>
<td>5 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Low Current</td>
<td>I_{IL1}</td>
<td>V_{IN} = 0 V; Inputs with no pull-up resistors</td>
<td>-5 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Powerdown Current</td>
<td>I_{DD3.3PD}</td>
<td>fin = 14.318MHz(^2)</td>
<td>27 mA</td>
<td>41 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>fin = 66.67MHz(^2)</td>
<td>32 mA</td>
<td>50 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Frequency Pin Inductance</td>
<td>F_i</td>
<td>V_{DD} = 3.3 V</td>
<td>14.318 MHz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Capacitance(^1)</td>
<td>C_{IN}</td>
<td>Logic Inputs</td>
<td>5 pF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C_{OUT}</td>
<td>Output pin capacitance</td>
<td>6 pF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C_{INX}</td>
<td>X1 & X2 pins</td>
<td>27 pF</td>
<td>36 pF</td>
<td>45 pF</td>
<td></td>
</tr>
<tr>
<td>Transition time(^1)</td>
<td>T_{trans}</td>
<td>To 1st crossing of target frequency</td>
<td>3 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Settling time(^1)</td>
<td>T_s</td>
<td>From 1st crossing to 1% target frequency</td>
<td>3 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clk Stabilization(^1)</td>
<td>T_{STAB}</td>
<td>From V_{DD} = 3.3 V to 1% target frequency</td>
<td>3 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delay</td>
<td>t_{pZH},t_{pZL}</td>
<td>Output enable delay (all outputs)</td>
<td>1 ns</td>
<td>10 ns</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\)Guaranteed by design, not 100% tested in production.

\(^2\)Operating current depends on both the input and output frequencies. The values shown represent the upper and lower extremes. The higher the input/output frequency, the higher the current draw. The relationship is linear.
Electrical Characteristics—CLKOUT

T_A = 0 - 85°C; V_{DD} = 3.3V +/-5%; C_L = 15 pF (unless otherwise specified)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output High Voltage</td>
<td>V<sub>OH</sub></td>
<td>I<sub>OH</sub> = -1 mA</td>
<td>2.4</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Output Low Voltage</td>
<td>V<sub>OL</sub></td>
<td>I<sub>OL</sub> = 1 mA</td>
<td>0.4</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Rise Time</td>
<td>t<sub>r</sub>, V<sub>OL</sub> = 0.41V, V<sub>OH</sub> = 0.86V</td>
<td>0.5</td>
<td>0.6</td>
<td>1</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Fall Time</td>
<td>t<sub>f</sub>, V<sub>OH</sub> = 0.86V, V<sub>OL</sub> = 0.41V</td>
<td>0.5</td>
<td>0.6</td>
<td>1</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Duty Cycle</td>
<td>d<sub>1</sub></td>
<td>measurement from differential waveform - 0.35V to +0.35V</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>%</td>
</tr>
<tr>
<td>Jitter, Cycle to cycle</td>
<td>t<sub>jyc-cyc</sub></td>
<td>V<sub>T</sub> = 50%</td>
<td>50</td>
<td>150</td>
<td></td>
<td>ps</td>
</tr>
</tbody>
</table>

*Guaranteed by design, not 100% tested in production.

Electrical Characteristics—REF

T_A = 0 - 85°C; V_{DD} = 3.3V +/-5%; C_L = 15 pF (unless otherwise specified)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Frequency</td>
<td>F<sub>O1</sub></td>
<td></td>
<td>14.318</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>Output Impedance</td>
<td>R<sub>DSP<sup>1</sup></sub></td>
<td>V<sub>O</sub> = V<sub>DD</sub>*0.5</td>
<td>20</td>
<td>48</td>
<td>60</td>
<td>Ω</td>
</tr>
<tr>
<td>Output High Voltage</td>
<td>V<sub>OH</sub></td>
<td>I<sub>OH</sub> = -1 mA</td>
<td>2.4</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Output Low Voltage</td>
<td>V<sub>OL</sub></td>
<td>I<sub>OL</sub> = 1 mA</td>
<td>0.4</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Output High Current</td>
<td>I<sub>OH</sub></td>
<td>V<sub>OL@MIN</sub> = 1.0 V, V<sub>OH@MAX</sub> = 3.135 V</td>
<td>-29</td>
<td>-23</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Output Low Current</td>
<td>I<sub>OL</sub></td>
<td>V<sub>OL@MIN</sub> = 1.95 V, V<sub>OL@MAX</sub> = 0.4 V</td>
<td>29</td>
<td>27</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Rise Time</td>
<td>t<sub>r</sub>, V<sub>OL</sub> = 0.4 V, V<sub>OH</sub> = 2.4 V</td>
<td>1</td>
<td>1.2</td>
<td>2</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Fall Time</td>
<td>t<sub>f</sub>, V<sub>OH</sub> = 2.4 V, V<sub>OL</sub> = 0.4 V</td>
<td>1</td>
<td>1.2</td>
<td>2</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Duty Cycle</td>
<td>d<sub>1</sub></td>
<td>V<sub>T</sub> = 1.5 V</td>
<td>45</td>
<td>51</td>
<td>55</td>
<td>%</td>
</tr>
<tr>
<td>Jitter, Cycle to cycle</td>
<td>t<sub>jyc-cyc</sub></td>
<td>V<sub>T</sub> = 1.5 V</td>
<td>105</td>
<td>300</td>
<td></td>
<td>ps</td>
</tr>
</tbody>
</table>

Guaranteed by design, not 100% tested in production.
Package Outline and Package Dimensions (8-pin SOIC, 150 Mil. Body)

Package dimensions are kept current with JEDEC Publication No. 95

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.35</td>
<td>1.75</td>
<td>.0532</td>
<td>.0688</td>
</tr>
<tr>
<td>A1</td>
<td>0.10</td>
<td>0.25</td>
<td>.0040</td>
<td>.0098</td>
</tr>
<tr>
<td>B</td>
<td>0.33</td>
<td>0.51</td>
<td>.013</td>
<td>.020</td>
</tr>
<tr>
<td>C</td>
<td>0.19</td>
<td>0.25</td>
<td>.0075</td>
<td>.0098</td>
</tr>
<tr>
<td>D</td>
<td>4.80</td>
<td>5.00</td>
<td>.1890</td>
<td>.1968</td>
</tr>
<tr>
<td>E</td>
<td>3.80</td>
<td>4.00</td>
<td>.1497</td>
<td>.1574</td>
</tr>
<tr>
<td>e</td>
<td>1.27</td>
<td>BASIC</td>
<td>.050</td>
<td>BASIC</td>
</tr>
<tr>
<td>H</td>
<td>5.80</td>
<td>6.20</td>
<td>.2284</td>
<td>.2440</td>
</tr>
<tr>
<td>h</td>
<td>0.25</td>
<td>0.50</td>
<td>.010</td>
<td>.020</td>
</tr>
<tr>
<td>L</td>
<td>0.40</td>
<td>1.27</td>
<td>.016</td>
<td>.050</td>
</tr>
<tr>
<td>α</td>
<td>0°</td>
<td>8°</td>
<td>0°</td>
<td>8°</td>
</tr>
</tbody>
</table>

"LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.
Revision History

<table>
<thead>
<tr>
<th>Rev.</th>
<th>Issue Date</th>
<th>Who</th>
<th>Description</th>
<th>Page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>06/25/04</td>
<td></td>
<td>Add Lead Free package description to Ordering Information</td>
<td>10</td>
</tr>
<tr>
<td>C</td>
<td>06/29/04</td>
<td></td>
<td>Add Revision History table to datasheet.</td>
<td>11</td>
</tr>
<tr>
<td>D</td>
<td>05/23/05</td>
<td></td>
<td>1. Revise ABS max ratings.</td>
<td>8-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Updated REF Electrical Characteristics table.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Updated LF ordering information from "lead free" to "RoHS compliant"</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>06/04/08</td>
<td></td>
<td>Updated MLF ordering info</td>
<td>9</td>
</tr>
<tr>
<td>F</td>
<td>06/16/11</td>
<td>RDW</td>
<td>1. Added operating current specs that were inadvertently omitted</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. Updated ordering info to latest format</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3. Changed CL from "10-20 pF" to 15 pF</td>
<td>1, 7-9</td>
</tr>
</tbody>
</table>
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades; "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.IDT.com/go/support

© 2019 Renesas Electronics Corporation. All rights reserved.