Description

The F0424 is a 600MHz to 4200MHz SiGe High-Gain Broadband RF Amplifier. The combination of low noise figure (NF) and high linearity performance allows the device to be used in both receiver and transmitter applications.

The F0424 is designed to operate with a single 5V or 3.3V power supply using a nominal 70mA of I\text{CC}. With a supply voltage of 5V, the F0424 provides 17.3dB gain with +40dBm OIP3 and 2.3dB noise figure at 2600MHz.

The device is packaged in a 2 × 2 mm, 8-pin Thin DFN with 50Ω single-ended RF input and output impedances for ease of integration into the signal path.

Competitive Advantage

- High Gain
- Broadband
- STBY Feature
- Superior Reliability versus GaAs

Typical Applications

- 4G TDD and FDD Base Stations
- 2G/3G Base Stations
- Repeaters and DAS
- Point-to-Point Infrastructure
- Public Safety Infrastructure
- Military Handhelds

Table 1. Typical Values

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Frequency (MHz)</th>
<th>Gain (dB)</th>
<th>NF (dB)</th>
<th>OIP3 (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F0424</td>
<td>600 to 4200</td>
<td>17.3</td>
<td>2.3</td>
<td>+40</td>
</tr>
</tbody>
</table>

Features

- RF Range: 600MHz to 4200MHz
- Noise Figure = 2.3dB at 2600MHz
- Gain = 17.3dB at 2600MHz
- OIP3 = +40dBm at 2600MHz
- Output P1dB = +21dBm at 2600MHz
- Near-Constant Gain versus Temperature
- 3.3V or 5V Power Supply
- I\text{CC} = 70mA
- 2mA Standby Current
- 350mW Typical DC Power at 5V Supply
- 50Ω Input and Output Impedances
- Operating Temperature (T_{\text{EPAD}}) Range: -40°C to +105°C
- 2 × 2 mm, 8-DFN Package

Block Diagram

![Block Diagram](image)
Contents

Description...1
Competitive Advantage ...1
Typical Applications..1
Features ..1
Block Diagram ..1
Pin Assignments...5
Pin Descriptions ..5
Absolute Maximum Ratings ..6
Recommended Operating Conditions ...6
Electrical Characteristics..7
Electrical Characteristics ..8
Thermal Characteristics ...9
Typical Operating Conditions (TOC) ...9
Typical Performance Characteristics ...10
Typical Performance Characteristics ...11
Typical Performance Characteristics ...12
Typical Performance Characteristics ...13
Typical Performance Characteristics ...14
Typical Performance Characteristics ...15
Typical Application Circuit ...16
Evaluation Kit Picture ...17
Evaluation Kit / Applications Circuit ..18
Applications Information ..19
 Power Supplies ..20
Package Outline Drawings ...21
Marking Diagram ...21
Information ...21
Revision History ...22

Figures

Figure 1. Block Diagram ..1
Figure 2. Pin Assignments for 2 × 2 × 0.75 mm 8-DFN Package – Top View ..5
Figure 3. Gain versus Temperature (5V Variation) ...10
Figure 4. Gain versus Temperature (3.3V Variation) ...10
Figure 5. Gain versus Bias Current (5.0V) ..10
Figure 6. Gain versus Bias Current (3.3V) ..10
Figure 7. Output IP3 versus Temperature (5V Variation, 70mA) ..10
Figure 8. Output IP3 versus Temperature (5V Variation, 80mA) ..10
Figure 9. Output IP3 versus Temperature (3.3V Variation, 70mA) ..11
Figure 10. Output IP3 versus Temperature (3.3V Variation, 40mA) ...11
Figure 11. Output IP3 versus Bias Current (5.0V) ...11
Figure 12. Output IP3 versus Bias Current (3.3V) ...11
Figure 13. Output 1dB Compression versus Temperature (5V Variation, 70mA) ...11
Figure 14. Output 1dB Compression versus Temperature (3.3V Variation, 70mA) ...11
Figure 15. Gain Compression versus Temperature (5V, 0.7GHz, 70mA) ...12
Figure 16. Phase Compression versus Temperature (5V, 0.7GHz, 70mA) ..12
Figure 17. Gain Compression versus Temperature (5V, 1.9GHz, 70mA) ...12
Figure 18. Phase Compression versus Temperature (5V, 1.9GHz, 70mA) ..12
Figure 19. Gain Compression versus Temperature (5V, 2.6GHz, 70mA) ...12
Figure 20. Phase Compression versus Temperature (5V, 2.6GHz, 70mA) ..12
Figure 21. Gain Compression versus Temperature (5V, 3.5GHz, 70mA) ...13
Figure 22. Phase Compression versus Temperature (5V, 3.5GHz, 70mA) ..13
Figure 23. Gain Compression versus Temperature (5V, 4.1GHz, 70mA) ...13
Figure 24. Phase Compression versus Temperature (5V, 4.1GHz, 70mA) ..13
Figure 25. Gain Compression versus Temperature (3.3V, 2.6GHz, 70mA) ...13
Figure 26. Phase Compression versus Temperature (3.3V, 2.6GHz, 70mA) ...13
Figure 27. RFIN Return Loss versus Temperature (5V Variation) ...14
Figure 28. RFIN Return Loss versus Temperature (3.3V Variation) ..14
Figure 29. RFOUT Return Loss versus Temperature (5V Variation) ...14
Figure 30. RFOUT Return Loss versus Temperature (3.3V Variation) ..14
Figure 31. Reverse Gain versus Temperature (5V Variation) ...14
Figure 32. Stability Factor for Various Currents (3.3V, 5.0V, -40°C, R8=1K) ...14
Figure 33. Turn-on Time (3.3V) ..15
Figure 34. Turn-on Time (5.0V) ..15
Figure 35. Noise Figure versus Temperature (5.0V Variation) ..15
Figure 36. Noise Figure versus Temperature (3.3V Variation) ...15
Figure 37. Noise Figure versus Current (5.0V Variation) ..15
Figure 38. Noise Figure versus Current (3.3V Variation) ..15
Figure 39. Electrical Schematic ...16
Figure 40. Evaluation Kit – Top View ..17
Figure 41. Evaluation Kit – Bottom View ...17
Figure 42. Electrical Schematic for Evaluation Board ...18
Figure 43. Control Pin Interface for Signal Integrity ..20
Tables

Table 1. Typical Values ..1
Table 2. Pin Descriptions..5
Table 3. Absolute Maximum Ratings ..6
Table 4. Recommended Operating Conditions..6
Table 5. Electrical Characteristics – 5V Supply Voltage ...7
Table 6. Electrical Characteristics – 3.3V Supply Voltage ..8
Table 7. Package Thermal Characteristics ...9
Table 8. Bill of Material (BOM) ..19
Table 9. RSET Biasing Resistor for Various Bias Currents (5V, 3.3V Supply) ..19
Pin Assignments

Figure 2. Pin Assignments for $2 \times 2 \times 0.75 \text{ mm} 8$-DFN Package – Top View

Pin Descriptions

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VCC</td>
<td>Power supply. The bypass capacitor must be as close to the pin as possible.</td>
</tr>
<tr>
<td>2</td>
<td>RFIN</td>
<td>RF input internally matched to 50Ω. An external DC block is required.</td>
</tr>
<tr>
<td>3</td>
<td>NC</td>
<td>No connection. This pin can be left unconnected, connected to VCC, or connected to GND. IDT recommends connecting it to GND.</td>
</tr>
<tr>
<td>4</td>
<td>RSET</td>
<td>Main amplifier current bias setting resistor. Connect to GND.</td>
</tr>
<tr>
<td>5</td>
<td>RDSET</td>
<td>Distortion amplifier current bias setting resistor. Connect to GND.</td>
</tr>
<tr>
<td>6</td>
<td>STBY</td>
<td>Standby. If this pin is not connected or is logic LOW, the device will operate under its normal operating condition. If this pin is logic HIGH, the F0424 will be in STBY Mode.</td>
</tr>
<tr>
<td>7</td>
<td>RFOUT</td>
<td>RF output internally matched to 50Ω. An external DC block is required.</td>
</tr>
<tr>
<td>8</td>
<td>i.c.</td>
<td>Connect this pin directly to ground.</td>
</tr>
<tr>
<td></td>
<td>EPAD</td>
<td>Exposed pad. This pad is internally connected to GND. Solder this exposed pad to a printed circuit board (PCB) pad that uses multiple ground vias to provide heat transfer out of the device into the PCB ground planes. These multiple ground vias are also required to achieve the specified RF performance.</td>
</tr>
</tbody>
</table>
Absolute Maximum Ratings

The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the device. Functional operation of the F0424 at absolute maximum ratings is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Table 3. Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V\textsubscript{CC} to GND</td>
<td>V\textsubscript{CC}</td>
<td>-0.3</td>
<td>+5.5</td>
<td>V</td>
</tr>
<tr>
<td>STBY</td>
<td>V\textsubscript{STBY}</td>
<td>-0.3</td>
<td>+3.6</td>
<td>V</td>
</tr>
<tr>
<td>STBY Minus VCC Voltage (voltage difference)</td>
<td>V\textsubscript{STBY-VCC}</td>
<td>-0.3</td>
<td>0.3</td>
<td>V</td>
</tr>
<tr>
<td>RFIN Externally Applied DC Current</td>
<td>I\textsubscript{RFIN}</td>
<td>-1</td>
<td>+1</td>
<td>mA</td>
</tr>
<tr>
<td>RFOUT Externally Applied DC Voltage</td>
<td>V\textsubscript{RFOUT}</td>
<td>V\textsubscript{CC} - 0.15</td>
<td>V\textsubscript{CC} + 0.15</td>
<td>V</td>
</tr>
<tr>
<td>RSET Pin Maximum DC Current</td>
<td>I\textsubscript{PIN4}</td>
<td>-1</td>
<td>+1</td>
<td>mA</td>
</tr>
<tr>
<td>RDSET Pin Maximum DC Current</td>
<td>I\textsubscript{PIN5}</td>
<td>-1</td>
<td>+1</td>
<td>mA</td>
</tr>
<tr>
<td>RF Input Power (RFOUT) Present for 24 Hours Maximum [a]</td>
<td>P\textsubscript{MAX_IN}</td>
<td>0.6</td>
<td>+20</td>
<td>dBm</td>
</tr>
<tr>
<td>Continuous Power Dissipation</td>
<td>P\textsubscript{DISS}</td>
<td>0.6</td>
<td></td>
<td>W</td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>T\textsubscript{MAX}</td>
<td>140</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T\textsubscript{STOR}</td>
<td>-65</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Lead Temperature (soldering, 10s)</td>
<td></td>
<td></td>
<td>260</td>
<td>°C</td>
</tr>
<tr>
<td>Electrostatic Discharge – HBM (JEDEC/ESDA JS-001-2012)</td>
<td></td>
<td></td>
<td>2000 (Class 2)</td>
<td>V</td>
</tr>
<tr>
<td>Electrostatic Discharge – CDM (JEDEC 22-C101F)</td>
<td></td>
<td></td>
<td>1000 (Class C3)</td>
<td>V</td>
</tr>
</tbody>
</table>

[a] Exposure to these maximum RF levels can result in significant V\textsubscript{CC} current draw due to overdriving the amplifier stages.

Recommended Operating Conditions

Table 4. Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Voltage</td>
<td>V\textsubscript{CC}</td>
<td>V\textsubscript{CC} pins</td>
<td>3.15</td>
<td>5.25</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>T\textsubscript{EPAD}</td>
<td>Exposed paddle temperature</td>
<td>-40</td>
<td>+105</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>RF Frequency Range</td>
<td>f\textsubscript{RF}</td>
<td>Operating range</td>
<td>600</td>
<td>4200</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>RFIN Source Impedance</td>
<td>Z\textsubscript{RFIN}</td>
<td>Single-ended</td>
<td>50</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>RFOUT Load Impedance</td>
<td>Z\textsubscript{RFOUT}</td>
<td>Single-ended</td>
<td>50</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
</tbody>
</table>
Electrical Characteristics

See the F0424 Typical Application Circuit in Figure 42. Specifications apply when operated with $V_{CC} = +5.0V$, $R5 = 2.49k\Omega$, $R6 = 160\Omega$, $T_{E_{PAD}} = +25^\circ C$, $f_{RF} = 2.6GHz$, STBY = LOW, $ZS = ZL = 50\Omega$ single-ended, and output power = 0dBm/tone, unless stated otherwise. EVKit trace and connector losses are de-embedded (see the F0424EVBK Evaluation Kit in Figure 40).

Table 5. Electrical Characteristics – 5V Supply Voltage

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic Input High Threshold</td>
<td>V_{IH}</td>
<td></td>
<td>1.07 [a]</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Logic Input Low Threshold</td>
<td>V_{IL}</td>
<td></td>
<td>0.8</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Logic Current</td>
<td>I_{IN}, I_{IL}</td>
<td>Applied STBY voltage = 3.6V</td>
<td>-10</td>
<td>+100</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>Supply Current</td>
<td>I_{CC}</td>
<td></td>
<td>70</td>
<td>80</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Pull-down Resistor on STBY pin</td>
<td>R_{STBY}</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td>$k\Omega$</td>
</tr>
<tr>
<td>Standby Current</td>
<td>$I_{CC,STBY}$</td>
<td>50% STBY control to within ±0.5dB of final power level</td>
<td>0.25</td>
<td></td>
<td></td>
<td>μs</td>
</tr>
<tr>
<td>Setting Time</td>
<td>t_{SETTLE}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF Input Return Loss</td>
<td>R_{LIN}</td>
<td></td>
<td>13</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>RF Output Return Loss</td>
<td>R_{LOUT}</td>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
</tbody>
</table>

- **Gain**
 - $f_{RF} = 600MHz$: $G = 17.2$ dB
 - $f_{RF} = 1900MHz$: $G = 17.6$ dB
 - $f_{RF} = 2600MHz$: $G = 17.3$ dB
 - $f_{RF} = 3500MHz$: $G = 16.7$ dB
 - $f_{RF} = 4200MHz$: $G = 16.1$ dB

- **Gain Flatness (amplitude)**
 - $f_{RF} = 700MHz, \pm100MHz$: $G_{VAR} = \pm0.15$ dB
 - $f_{RF} = 1900MHz, \pm100MHz$: $G_{VAR} = \pm0.1$ dB
 - $f_{RF} = 2600MHz, \pm100MHz$: $G_{VAR} = \pm0.1$ dB
 - $f_{RF} = 3500MHz, \pm100MHz$: $G_{VAR} = \pm0.1$ dB
 - $f_{RF} = 4100MHz, \pm100MHz$: $G_{VAR} = \pm0.15$ dB

- **Gain Variation over Temperature**
 - $T_{E_{PAD}} = -40^\circ C$ to $+105^\circ C$: $G_{TEMP} = \pm0.2$ dB

- **Noise Figure**
 - $f_{RF} = 2600MHz$: $NF = 2.3$ dB
 - $f_{RF} = 3500MHz$: $NF = 2.7$ dB

- **Noise Figure Variation over Temperature**
 - $T_{E_{PAD}} = -40^\circ C$ to $+105^\circ C$: $NF_{TEMP} = \pm0.4$ dB

- **Output Third-Order Intercept Point**
 - $f_{RF} = 2600MHz$: $OIP3 = 35$ dBm
 - $f_{RF} = 3500MHz$: $OIP3 = 40$ dBm

- **Output Third-Order Intercept Point Variation over Temperature**
 - $T_{E_{PAD}} = -40^\circ C$ to $+105^\circ C$: $OIP3_{VAR} = -1.2/+0.26$ dB

- **Output P1dB compression**
 - $f_{RF} = 2600MHz$: $OP_{1dB} = 20$ dBm
 - $f_{RF} = 3500MHz$: $OP_{1dB} = 20$ dBm

- **Reverse Isolation**
 - $REV_{ISO} = 24$ dB

[a] Specifications in the minimum/maximum columns that are shown in **bold italics** are guaranteed by test. Specifications in these columns that are not shown in bold italics are guaranteed by design characterization.
Electrical Characteristics

See the F0424 Typical Application Circuit. Specifications apply when operated with \(V_{CC} = +3.3 \text{V} \), \(R5 = 2.49k\Omega \), \(R6 = 16\Omega \), \(T_{EPAD} = +25^\circ C \), \(f_{RF} = 2.6\text{GHz} \), STBY = LOW, \(Z_S = Z_L = 50\Omega \) single-ended, and output power = 0dBm/tone, unless stated otherwise. EVKit trace and connector losses are de-embedded.

Table 6. Electrical Characteristics – 3.3V Supply Voltage

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Minimum [a]</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic Input High Threshold</td>
<td>(V_{IH})</td>
<td></td>
<td>1.07 [a]</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Logic Input Low Threshold</td>
<td>(V_{IL})</td>
<td>Applied STBY voltage = 3.6V</td>
<td>0.8</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Supply Current</td>
<td>(I_{CC})</td>
<td></td>
<td>70</td>
<td></td>
<td>+100</td>
<td>(\mu \text{A})</td>
</tr>
<tr>
<td>Pull-Down Resistor on STBY Pin</td>
<td>(R_{STBY})</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td>(\text{k}\Omega)</td>
</tr>
<tr>
<td>Standby Current</td>
<td>(I_{CC,STBY})</td>
<td>50% STBY control to within (\pm0.5dB) of final power level</td>
<td>2</td>
<td></td>
<td></td>
<td>(\mu \text{A})</td>
</tr>
<tr>
<td>Settling Time</td>
<td>(t_{SETTLE})</td>
<td></td>
<td>0.25</td>
<td></td>
<td></td>
<td>(\mu \text{s})</td>
</tr>
<tr>
<td>RF Input Return Loss</td>
<td>(R_{LIN})</td>
<td></td>
<td>13</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>RF Output Return Loss</td>
<td>(R_{LOUT})</td>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Gain</td>
<td>(G)</td>
<td>(f_{RF} = 600\text{MHz})</td>
<td>17.2</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Gain Flatness (amplitude)</td>
<td>(G_{VAR})</td>
<td>(f_{RF} = 1900\text{MHz})</td>
<td>17.6</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Gain Variation over Temperature</td>
<td>(G_{TEMP})</td>
<td>(T_{EPAD} = -40^\circ C) to (+105^\circ C)</td>
<td>(\pm0.2)</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>(NF)</td>
<td>(f_{RF} = 2600\text{MHz})</td>
<td>2.3</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Noise Figure Variation over Temperature</td>
<td>(NF_{TEMP})</td>
<td>(T_{EPAD} = -40^\circ C) to (+105^\circ C)</td>
<td>+0.5/-0.4</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Output Third Order Intercept Point</td>
<td>(OIP3)</td>
<td>(f_{RF} = 2600\text{MHz}) 5MHz tone separation</td>
<td>33</td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Output P1dB compression</td>
<td>(OP_{1dB})</td>
<td>(f_{RF} = 3500\text{MHz}) 5MHz tone separation</td>
<td>31</td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Reverse Isolation</td>
<td>(REV_{ISO})</td>
<td></td>
<td>24</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
</tbody>
</table>

[a] Specifications in the minimum/maximum columns that are shown in bold italics are guaranteed by test. Specifications in these columns that are not shown in bold italics are guaranteed by design characterization.
Thermal Characteristics

Table 7. Package Thermal Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junction-to-Ambient Thermal Resistance.</td>
<td>θ_{JA}</td>
<td>93</td>
<td>°C/W</td>
</tr>
<tr>
<td>Junction-to-Case Thermal Resistance. (Case is defined as the exposed paddle)</td>
<td>θ_{JC-BOT}</td>
<td>27</td>
<td>°C/W</td>
</tr>
<tr>
<td>Moisture Sensitivity Rating (Per J-STD-020)</td>
<td></td>
<td>MSL-1</td>
<td></td>
</tr>
</tbody>
</table>

Typical Operating Conditions (TOC)

- Evaluation kit connector and trace losses de-embedded
- $V_{CC} = 5.0$V (plots also taken with $V_{CC} = 3.3$V)
- $T_{EPAD} = +25^\circ$C
- STBY = not connected (internally pulled logic low)
- RSET (R5) = 2.49K unless otherwise noted
- Small signal parameters measured with $P_{OUT} = 0$dBm
- Two tone tests $P_{OUT} = 0$dBm/tone with 5MHz tone spacing
- $Z_L = Z_S = 50\,\Omega$, single-ended
Typical Performance Characteristics

Figure 3. Gain versus Temperature (5V Variation)

Figure 4. Gain versus Temperature (3.3V Variation)

Figure 5. Gain versus Bias Current (5.0V)

Figure 6. Gain versus Bias Current (3.3V)

Figure 7. Output IP3 versus Temperature (5V Variation, 70mA)

Figure 8. Output IP3 versus Temperature (5V Variation, 80mA)
Typical Performance Characteristics

Figure 9. Output IP3 versus Temperature (3.3V Variation, 70mA)

Figure 10. Output IP3 versus Temperature (3.3V Variation, 40mA)

Figure 11. Output IP3 versus Bias Current (5.0V)

Figure 12. Output IP3 versus Bias Current (3.3V)

Figure 13. Output 1dB Compression versus Temperature (5V Variation, 70mA)

Figure 14. Output 1dB Compression versus Temperature (3.3V Variation, 70mA)
Typical Performance Characteristics

Figure 15. Gain Compression versus Temperature (5V, 0.7GHz, 70mA)

Figure 16. Phase Compression versus Temperature (5V, 0.7GHz, 70mA)

Figure 17. Gain Compression versus Temperature (5V, 1.9GHz, 70mA)

Figure 18. Phase Compression versus Temperature (5V, 1.9GHz, 70mA)

Figure 19. Gain Compression versus Temperature (5V, 2.6GHz, 70mA)

Figure 20. Phase Compression versus Temperature (5V, 2.6GHz, 70mA)
Typical Performance Characteristics

Figure 21. Gain Compression versus Temperature (5V, 3.5GHz, 70mA)

Figure 22. Phase Compression versus Temperature (5V, 3.5GHz, 70mA)

Figure 23. Gain Compression versus Temperature (5V, 4.1GHz, 70mA)

Figure 24. Phase Compression versus Temperature (5V, 4.1GHz, 70mA)

Figure 25. Gain Compression versus Temperature (3.3V, 2.6GHz, 70mA)

Figure 26. Phase Compression versus Temperature (3.3V, 2.6GHz, 70mA)
Typical Performance Characteristics

Figure 27. RFIN Return Loss versus Temperature (5V Variation)

Figure 28. RFIN Return Loss versus Temperature (3.3V Variation)

Figure 29. RFOUT Return Loss versus Temperature (5V Variation)

Figure 30. RFOUT Return Loss versus Temperature (3.3V Variation)

Figure 31. Reverse Gain versus Temperature (5V Variation)

Figure 32. Stability Factor for Various Currents (3.3V, 5.0V, -40°C, R8=1K)
Typical Performance Characteristics

Figure 33. Turn-on Time (3.3V)

Figure 34. Turn-on Time (5.0V)

Figure 35. Noise Figure versus Temperature (5.0V Variation)

Figure 36. Noise Figure versus Temperature (3.3V Variation)

Figure 37. Noise Figure versus Current (5.0V Variation)

Figure 38. Noise Figure versus Current (3.3V Variation)
Typical Application Circuit

Figure 39 is a typical circuit (minimum components) that can be use in a design for the F0424 by the customer.

Figure 39. Electrical Schematic
Evaluation Kit Picture

Figure 40. Evaluation Kit – Top View

Figure 41. Evaluation Kit – Bottom View
Evaluation Kit / Applications Circuit

Figure 42. Electrical Schematic for Evaluation Board
Table 8. Bill of Material (BOM)

<table>
<thead>
<tr>
<th>Part Reference</th>
<th>QTY</th>
<th>Description</th>
<th>Manufacturer Part #</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2</td>
<td>1</td>
<td>10nF ±5% 50V X7R Ceramic Capacitor (0402)</td>
<td>GRM155R71H103J</td>
<td>Murata</td>
</tr>
<tr>
<td>C4, C21</td>
<td>2</td>
<td>22pF ±5%, 50V, C0G Ceramic Capacitor (0402)</td>
<td>GRM1555C1H220J</td>
<td>Murata</td>
</tr>
<tr>
<td>C7</td>
<td>1</td>
<td>2pF ±0.1pF 100V C0G, Ceramic Capacitor (0402)</td>
<td>GRM1555C1H2R0B</td>
<td>Murata</td>
</tr>
<tr>
<td>C25</td>
<td>1</td>
<td>1μF ±10% 16V X7R Ceramic Capacitor (0603)</td>
<td>GRM188R71C105K</td>
<td>Murata</td>
</tr>
<tr>
<td>L2, L3, R1, R15</td>
<td>4</td>
<td>0Ω 1/10W Resistors (0402)</td>
<td>ERJ-2GE0R00X</td>
<td>Panasonic</td>
</tr>
<tr>
<td>R4, R8</td>
<td>1</td>
<td>1kΩ ±1% 1/10W Resistor (0402)</td>
<td>ERJ-3EKF1001X</td>
<td>Panasonic</td>
</tr>
<tr>
<td>R5</td>
<td>1</td>
<td>2.49kΩ ±1% 1/10W Resistor (0402) see Table 9 for resistor value versus operating current</td>
<td>ERJ-2RKF2491X</td>
<td>Panasonic</td>
</tr>
<tr>
<td>R6</td>
<td>1</td>
<td>160Ω ±1% 1/10W Resistor (0402)</td>
<td>ERJ-2RKF1600X</td>
<td>Panasonic</td>
</tr>
<tr>
<td>J1, J2, J3</td>
<td>3</td>
<td>Edge Launch SMA (0.375 inch pitch ground tab)</td>
<td>142-0701-851</td>
<td>Emerson Johnson</td>
</tr>
<tr>
<td>J4</td>
<td>0</td>
<td>CONN HEADER VERT SGL 2 X 1 POS GOLD</td>
<td>961102-6404-AR</td>
<td>3M</td>
</tr>
<tr>
<td>J5</td>
<td>1</td>
<td>CONN HEADER VERT SGL 3 X 1 POS GOLD</td>
<td>961103-6404-AR</td>
<td>3M</td>
</tr>
<tr>
<td>TP1</td>
<td>1</td>
<td>TEST POINT PC MINI .040”D RED</td>
<td>Keystone5000</td>
<td>Keystone</td>
</tr>
<tr>
<td>TP2</td>
<td>1</td>
<td>TEST POINT PC MINI .040”D BLACK</td>
<td>Keystone5001</td>
<td>Keystone</td>
</tr>
<tr>
<td>TP4, TP5, TP6, TP7</td>
<td>0</td>
<td>DNP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U1</td>
<td>1</td>
<td>High Gain Broadband RF Amplifier</td>
<td>F0424</td>
<td>IDT</td>
</tr>
<tr>
<td>C5, C26, C27, R16, R17, R19</td>
<td>NA</td>
<td>These components are not populated</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 9. RSET Biasing Resistor for Various Bias Currents (5V, 3.3V Supply)

<table>
<thead>
<tr>
<th>Operating Icc</th>
<th>RSET Resistor (R5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40mA</td>
<td>6.19kΩ</td>
</tr>
<tr>
<td>50mA</td>
<td>4.22kΩ</td>
</tr>
<tr>
<td>60mA</td>
<td>3.16kΩ</td>
</tr>
<tr>
<td>70mA</td>
<td>2.49kΩ</td>
</tr>
<tr>
<td>80mA</td>
<td>2.00kΩ</td>
</tr>
<tr>
<td>90mA</td>
<td>1.74kΩ</td>
</tr>
</tbody>
</table>

NOTE: 1% Resistors can be substituted with 5% equivalents.
Applications Information

Power Supplies

A common V_{CC} power supply should be used for all pins requiring DC power. All supply pins should be bypassed with external capacitors to minimize noise and fast transients. Supply noise can degrade the noise figure, and fast transients can trigger ESD clamps and cause them to fail. Supply voltage change or transients should have a slew rate smaller than 1V/20µS. In addition, all control pins should remain at 0V (±0.3V) while the supply voltage ramps or while it returns to zero.

If control signal integrity is a concern and clean signals cannot be guaranteed due to overshoot, undershoot, ringing, etc., the following circuit at the input of the STBY control pin is recommended. This applies to the STBY pin as shown below. Note the recommended resistor and capacitor values do not necessarily match the EVKit BOM for the case of poor control signal integrity. For multiple devices driven by a single control line, the component values will need to be adjusted accordingly so as not to load down the control line.

Figure 43. Control Pin Interface for Signal Integrity
Package Outline Drawings
The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is the most current data available.
https://www.idt.com/document/psc/8-dfn-package-outline-drawing-20-x-20-x-075-mm-body-05mm-pitch-epad-08-x-160-mm-ntg8p2

Marking Diagram

Line 1 – 0424 = abbreviated the part number.
Line 2 – Y = Year code, last digit of production year ("8" would correspond to 2018).
Line 2 – W = Work week code ("W" corresponds to week 30).
Line 2 - ** = Sequential alphanumeric for lot traceability.

Information

<table>
<thead>
<tr>
<th>Orderable Part Number</th>
<th>Description and Package</th>
<th>MSL Rating</th>
<th>Carrier Type</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>F0424NTGK</td>
<td>F0424 High-Gain Broadband RF Amplifier, 2.0 × 2.0 × 0.75 mm 8-DFN (NTG8P2)</td>
<td>1</td>
<td>Tray</td>
<td>-40°C to +105°C</td>
</tr>
<tr>
<td>F0424NTGK8</td>
<td>F0424 High-Gain Broadband RF Amplifier, 2.0 × 2.0 × 0.75 mm 8-DFN (NTG8P2)</td>
<td>1</td>
<td>Reel</td>
<td>-40°C to +105°C</td>
</tr>
<tr>
<td>F0424EVBK</td>
<td>Evaluation Board</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Revision History

<table>
<thead>
<tr>
<th>Revision Date</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 7, 2019</td>
<td>▪ Added simplified application circuit.</td>
</tr>
<tr>
<td></td>
<td>▪ Updated datasheet format</td>
</tr>
<tr>
<td>May 5, 2018</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>
8-DFN, Package Outline Drawing
2.0 x 2.0 x 0.75 mm Body, 0.5mm Pitch, Epad 0.8 x 1.60 mm
NTG8P2, PSC-4604-02, Rev 02, Page 1

NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETERS.
2. ALL DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5M–1994

© Integrated Device Technology, Inc.
8-DFN, Package Outline Drawing
2.0 x 2.0 x 0.75 mm Body, 0.5mm Pitch, Epad 0.8 x 1.60 mm
NTG8P2, PSC-4604-02, Rev 02, Page 2

NOTES:
1. ALL DIMENSIONS ARE IN MM. ANGLES IN DEGREES.
2. TOP DOWN VIEW, AS VIEWED ON PCB.
3. LAND PATTERN RECOMMENDATION PER IPC–7351B GENERIC REQUIREMENT
 FOR SURFACE MOUNT DESIGN AND LAND PATTERN.

Package Revision History

<table>
<thead>
<tr>
<th>Date Created</th>
<th>Rev No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 12, 2018</td>
<td>Rev 01.</td>
<td>New Format. Change QFN to VFQFPN</td>
</tr>
<tr>
<td>April 12, 2018</td>
<td>Rev 02</td>
<td>Change "VFQFPN" to "DFN"</td>
</tr>
</tbody>
</table>
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of semiconductor products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2020 Renesas Electronics Corporation. All rights reserved.