GENERAL DESCRIPTION

The F2250 is a low insertion loss Voltage Variable RF Attenuator (VVA) designed for a multitude of wireless and other RF applications. This device covers a broad frequency range from 50MHz to 6000MHz. In addition to providing low insertion loss, the F2250 provides excellent linearity performance over its entire voltage control and attenuation range.

The F2250 uses a single positive supply voltage of 3.15V to 5.25V. Other features include the VMODE pin allowing either positive or negative voltage control slope vs attenuation and multi-directional operation meaning the RF input can be applied to either RF1 or RF2 pins. Control voltage ranges from 0V to 3.6V using either positive or negative control voltage slope.

COMPETITIVE ADVANTAGE

F2250 provides extremely low insertion loss and superb IP3, IP2, Return Loss and Slope Linearity across the control range. Comparing to the previous state-of-the-art for silicon VVAs this device is better as follows:

- Insertion Loss @ 2000MHz: 1.4dB vs. 2.8dB
- Insertion Loss @ 6000MHz: 2.7dB vs. 7dB
- Maximum Attenuation Slope: 33dB/Volt vs. 53dB/Volt
- Minimum Return Loss up to 6000MHz: 12.5dB vs. 7dB
- Minimum Output IP3: 31dBm vs. 15dBm
- Minimum Input IP2: 87dBm vs. 80dBm
- Maximum Operating Temperature: +105°C vs. +85°C

APPLICATIONS

- Base Station 2G, 3G, 4G
- Portable Wireless
- Repeaters and E911 systems
- Digital Pre-Distortion
- Point to Point Infrastructure
- Public Safety Infrastructure
- WIMAX Receivers and Transmitters
- Military Systems, JTRS radios
- RFID handheld and portable readers
- Cable Infrastructure
- Wireless LAN
- Test / ATE Equipment

FEATURES

- Low Insertion Loss: 1.4dB @ 2000MHz
- Typical / Min IP3: 65dBm / 47dBm
- Typical / Min IP2: 95dBm / 87dBm
- 33.6dB Attenuation Range
- Bi-directional RF ports
- +34.4dBm Input P1dB compression
- VMODE pin allows either positive or negative attenuation control response
- Linear-in-dB attenuation characteristic
- Supply voltage: 3.15V to 5.25V
- VCTRL range: 0V to 3.6V using 5V supply
- +105°C max operating temperature
- 3mm x 3mm, 16-pin QFN package

DEVICE BLOCK DIAGRAM

ORDERING INFORMATION

PART# MATRIX

<table>
<thead>
<tr>
<th>Part#</th>
<th>RF Freq Range (MHz)</th>
<th>Insertion Loss (dB)</th>
<th>IIP3 (dBm)</th>
<th>Pinout Compatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2250</td>
<td>50 - 6000</td>
<td>1.4 (at 2GHz)</td>
<td>+65</td>
<td>RFMD</td>
</tr>
<tr>
<td>F2255</td>
<td>1 - 3000</td>
<td>1.1 (at 500MHz)</td>
<td>+60</td>
<td></td>
</tr>
<tr>
<td>F2258</td>
<td>50 - 6000</td>
<td>1.4 (at 2GHz)</td>
<td>+65</td>
<td>Hittite</td>
</tr>
</tbody>
</table>
Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter / Condition</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V<sub>DD</sub> to GND</td>
<td>V<sub>DD</sub></td>
<td>-0.3</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>V<sub>MODE</sub> to GND</td>
<td>V<sub>MODE</sub></td>
<td>-0.3</td>
<td>Minimum (V<sub>DD</sub>, 3.9)</td>
<td>V</td>
</tr>
<tr>
<td>V<sub>CTRL</sub> to GND</td>
<td>V<sub>CTRL</sub></td>
<td>-0.3</td>
<td>Minimum (V<sub>DD</sub>, 4.0)</td>
<td>V</td>
</tr>
<tr>
<td>RF1, RF2 to GND</td>
<td>V<sub>RF</sub></td>
<td>-0.3</td>
<td>0.3</td>
<td>V</td>
</tr>
<tr>
<td>RF1 or RF2 Input Power applied for 24 hours maximum (V<sub>DD</sub> applied @ 2GHz and +85°C)</td>
<td>P<sub>MAX24</sub></td>
<td>30</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td>RF1 or RF2 Continuous Operating Power</td>
<td>P<sub>MAX_OP</sub></td>
<td>See Figure 1</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T<sub>MAX</sub></td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T<sub>ST</sub></td>
<td>-65</td>
<td>+150</td>
<td>°C</td>
</tr>
<tr>
<td>Lead Temperature (soldering, 10s)</td>
<td>T<sub>LEAD</sub></td>
<td>+260</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>ESD Voltage – HBM (Per ESD STM5.1-2007)</td>
<td>V<sub>ESDHBM</sub></td>
<td>Class 1C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESD Voltage – CDM (Per ESD STM5.3.1-2009)</td>
<td>V<sub>ESDCDM</sub></td>
<td>Class C3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Maximum RF Input Power vs. RF Frequency

Stresses above those listed above may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Thermal and Moisture Characteristics

-Θ_{JA} (Junction – Ambient) 80.6°C/W
-Θ_{JC} (Junction – Case) The Case is defined as the exposed paddle 5.1°C/W
-Moisture Sensitivity Rating (Per J-STD-020) MSL 1
F2250 Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Condition</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Freq Range</td>
<td>F_{RF}</td>
<td></td>
<td>50</td>
<td></td>
<td>6000</td>
<td>MHz</td>
</tr>
<tr>
<td>Supply Voltage</td>
<td>V_{DD}</td>
<td></td>
<td>3.15</td>
<td></td>
<td>5.25</td>
<td>V</td>
</tr>
<tr>
<td>V_{MODE} Logic</td>
<td>V_{IH}</td>
<td>$V_{DD} > 3.9$V</td>
<td>1.17</td>
<td></td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>V_{IL}</td>
<td>$V_{DD} = 3.15$V to 3.9V</td>
<td>1.17</td>
<td></td>
<td>$V_{DD} - 0.3$</td>
<td>V</td>
</tr>
<tr>
<td>V_{CTRL} Range</td>
<td>V_{CTRL}</td>
<td>$V_{DD} = 3.9$V to 5.25V</td>
<td>0</td>
<td></td>
<td>3.6</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{DD} = 3.15$V to 3.9V</td>
<td>0</td>
<td></td>
<td>$V_{DD} - 0.3$</td>
<td>V</td>
</tr>
<tr>
<td>Supply Current</td>
<td>I_{DD}</td>
<td></td>
<td>0.5</td>
<td>1.17</td>
<td>2</td>
<td>mA</td>
</tr>
<tr>
<td>Logic Current</td>
<td>I_{MODE}</td>
<td></td>
<td>-1</td>
<td></td>
<td>38</td>
<td>μA</td>
</tr>
<tr>
<td>I_{CTRL} Current</td>
<td>I_{CTRL}</td>
<td></td>
<td>-1</td>
<td></td>
<td>14</td>
<td>μA</td>
</tr>
<tr>
<td>RF Operating Power</td>
<td>$P_{MAX, CW}$</td>
<td></td>
<td>See Figure 1</td>
<td></td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td>RF1 Port Impedance</td>
<td>Z_{RF1}</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>RF2 Port Impedance</td>
<td>Z_{RF2}</td>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>T$_{CASE}$</td>
<td>Exposed Paddle Temperature</td>
<td>-40</td>
<td></td>
<td>+105</td>
<td>°C</td>
</tr>
</tbody>
</table>

Operating Conditions Notes:
1 – Items in min/max columns in **bold italics** are Guaranteed by Test.
2 – Items in min/max columns that are not bold/italics are Guaranteed by Design Characterization.
3 – Refer to the Maximum Operating RF Input Power vs. RF Frequency curves in Figure 1.
F2250 Specification

Refer to EVKit / Applications Circuit, $V_{DD} = +3.3V$, $T_C = +25^\circ C$, signals applied to RF1 input, $F_{RF} = 2000MHz$, minimum attenuation, $P_{IN} = 0$dBm for small signal parameters, $+20$dBm for single tone linearity tests, $+20$dBm per tone for two tone tests, two tone delta frequency = 50MHz, PCB board traces and connector losses are de-embedded unless otherwise noted. Refer to Typical Operating Curves for performance over entire frequency band.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Comment</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Loss, IL (Minimum Attenuation)</td>
<td>A_{MIN}</td>
<td>2GHz</td>
<td>1.4</td>
<td>1.6</td>
<td>1.9</td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3GHz</td>
<td>1.6</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6GHz</td>
<td>2.6</td>
<td>3.1</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Maximum Attenuation</td>
<td>A_{MAX}</td>
<td></td>
<td>34</td>
<td>35</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Insertion Phase Δ</td>
<td>$\Phi_{\Delta MAX}$</td>
<td>At 36dB attenuation relative to Insertion Loss</td>
<td>27</td>
<td></td>
<td></td>
<td>deg</td>
</tr>
<tr>
<td></td>
<td>$\Phi_{\Delta MID}$</td>
<td>At 18dB attenuation relative to Insertion Loss</td>
<td>10</td>
<td></td>
<td></td>
<td>deg</td>
</tr>
<tr>
<td>Input 1dB Compression 3</td>
<td>P_{1dB}</td>
<td></td>
<td>34.4</td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Minimum RF1 Return Loss over control voltage range</td>
<td>S_{11}</td>
<td>50MHz 4</td>
<td>16</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>700MHz</td>
<td>17</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2000MHz</td>
<td>17</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6000MHz</td>
<td>15</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Minimum RF2 Return Loss over control voltage range</td>
<td>S_{22}</td>
<td>50MHz 4</td>
<td>16</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>700MHz</td>
<td>15</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2000MHz</td>
<td>16</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6000MHz</td>
<td>13</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Input IP3</td>
<td>$IIP3$</td>
<td></td>
<td>65</td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Input IP3 over Attenuation 3</td>
<td>$IIP3_{ATTEN}$</td>
<td>All attenuation settings</td>
<td>44</td>
<td>47</td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Minimum Output IP3</td>
<td>$OIP3_{MIN}$</td>
<td>Maximum attenuation</td>
<td>35</td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Input IP2</td>
<td>$IIP2$</td>
<td>$P_{IN} + IM2_{dBc}$, IM2 term is $F1+F2$</td>
<td>95</td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Minimum Input IP2</td>
<td>$IIP2_{MIN}$</td>
<td>All attenuation settings</td>
<td>87</td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Input IH2</td>
<td>$HD2$</td>
<td>$P_{IN} + H2_{dBc}$</td>
<td>90</td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Input IH3</td>
<td>$HD3$</td>
<td>$P_{IN} + (H3_{dBc}/2)$</td>
<td>54</td>
<td></td>
<td></td>
<td>dBm</td>
</tr>
<tr>
<td>Settling Time</td>
<td>$T_{SETTL0.1dB}$</td>
<td>Any 1dB step in the 0dB to 33dB control range 50% V_{CTRL} to RF settled to within ± 0.1dB</td>
<td>15</td>
<td></td>
<td></td>
<td>µsec</td>
</tr>
</tbody>
</table>

Specification Notes:

1 – Items in min/max columns in **bold italics** are Guaranteed by Test.

2 – Items in min/max columns that are not bold/italics are Guaranteed by Design Characterization.

3 – The input 1dB compression point is a linearity figure of merit. Refer to Absolute Maximum Ratings section along with Figure 1 for the maximum RF input power vs. RF frequency.

4 – Set blocking capacitors C7 & C8 to 0.01uF to achieve best return loss performance at 50MHz.
TYPICAL OPERATING CONDITIONS

Unless otherwise noted, the following conditions apply:

- $V_{DD} = +3.3V$ or $+5.0V$
- $T_C = +25^\circ C$
- $V_{MODE} = 0V$
- RF trace and connector losses are de-embedded for S-parameters
- Pin = 0dBm for all small signal tests
- Pin = +20dBm for single tone linearity tests (RF1 port driven)
- Pin = +20dBm/tone for two tone linearity tests (RF1 port driven)
- Two tone frequency spacing = 50MHz
TYPICAL OPERATING CONDITIONS [S2P BROADBAND PERFORMANCE] (-1-)

Attenuation vs. V_{CTRL}

-40C / $V_{ctrl} = 0.0V$
-40C / $V_{ctrl} = 3.0V$
-40C / $V_{ctrl} = 3.0V$
-40C / $V_{ctrl} = 3.0V$
105C / $V_{ctrl} = 0.0V$
105C / $V_{ctrl} = 3.0V$
105C / $V_{ctrl} = 1.6V$

Min. & Max. Attenuation vs. Frequency

Attenuation Delta to 25C vs. Frequency
TYPICAL OPERATING CURVES [S2P vs. V_{CTRL}] (−2−)

Attenuation vs. V_{CTRL}

- V_{CTRL} (V)
- Attenuation (dB)
- Frequencies: 0.4GHz, 0.7GHz, 1.5GHz, 2.7GHz, 4.0GHz, 5.0GHz, 6.0GHz

Attenuation Slope vs. V_{CTRL}

- V_{CTRL} (V)
- Attenuation Slope (dB/V)
- Frequencies: 0.4GHz, 0.7GHz, 1.5GHz, 2.7GHz, 4.0GHz, 5.0GHz, 6.0GHz

RF1 Return Loss vs. V_{CTRL}

- V_{CTRL} (V)
- RF1 Return Loss (dB)
- Frequencies: 0.4GHz, 0.7GHz, 1.5GHz, 2.7GHz, 4.0GHz, 5.0GHz, 6.0GHz

RF2 Return Loss vs. V_{CTRL}

- V_{CTRL} (V)
- RF2 Return Loss (dB)
- Frequencies: 0.4GHz, 0.7GHz, 1.5GHz, 2.7GHz, 4.0GHz, 5.0GHz, 6.0GHz

Insertion Phase Δ vs. V_{CTRL}

- V_{CTRL} (V)
- Insertion Phase Δ (deg)
- (positive phase = electrically shorter)
- Frequencies: 0.4GHz, 0.7GHz, 1.5GHz, 2.7GHz, 4.0GHz, 5.0GHz, 6.0GHz

Insertion Phase Slope vs. V_{CTRL}

- V_{CTRL} (V)
- Insertion Phase Slope (deg/V)
- Frequencies: 0.4GHz, 0.7GHz, 1.5GHz, 2.7GHz, 4.0GHz, 5.0GHz, 6.0GHz
TYPICAL OPERATING CONDITIONS [S2P VS. VCTRL & TEMPERATURE] (-3-)

Attenuation Response vs. VCTRL

-40C / 0.9GHz
-25C / 0.9GHz
105C / 0.9GHz
-40C / 2.0GHz
-25C / 2.0GHz
105C / 2.0GHz
-40C / 3.0GHz
-25C / 3.0GHz
105C / 3.0GHz

(positive phase = electrically shorter)

Attenuation Slope vs. VCTRL

-40C / 0.9GHz
25C / 0.9GHz
105C / 0.9GHz
-40C / 2.0GHz
25C / 2.0GHz
105C / 2.0GHz
-40C / 3.0GHz
25C / 3.0GHz
105C / 3.0GHz

RF1 Return Loss vs. VCTRL

-40C / 0.9GHz
25C / 0.9GHz
105C / 0.9GHz
-40C / 2.0GHz
25C / 2.0GHz
105C / 2.0GHz
-40C / 3.0GHz
25C / 3.0GHz
105C / 3.0GHz

RF2 Return Loss vs. VCTRL

-40C / 0.9GHz
25C / 0.9GHz
105C / 0.9GHz
-40C / 2.0GHz
25C / 2.0GHz
105C / 2.0GHz
-40C / 3.0GHz
25C / 3.0GHz
105C / 3.0GHz

Insertion Phase Δ vs. VCTRL

-40C / 0.9GHz
-25C / 0.9GHz
105C / 0.9GHz
-40C / 2.0GHz
-25C / 2.0GHz
105C / 2.0GHz
-40C / 3.0GHz
-25C / 3.0GHz
105C / 3.0GHz

Insertion Phase Slope vs. VCTRL

-40C / 0.9GHz
-25C / 0.9GHz
105C / 0.9GHz
-40C / 2.0GHz
-25C / 2.0GHz
105C / 2.0GHz
-40C / 3.0GHz
-25C / 3.0GHz
105C / 3.0GHz

(positive phase = electrically shorter)
Typical Operating Conditions [S2P vs. Attenuation & Temperature]

RF1 Return Loss vs. Attenuation

- **Frequency Bands:** 0.4GHz, 0.7GHz, 1.5GHz, 2.7GHz, 4.0GHz, 5.0GHz, 6.0GHz
- **Temperature Conditions:** -40C / 0.9GHz, -40C / 2.0GHz, -40C / 3.0GHz, 25C / 0.9GHz, 25C / 2.0GHz, 25C / 3.0GHz, 105C / 0.9GHz, 105C / 2.0GHz, 105C / 3.0GHz

RF2 Return Loss vs. Attenuation

- **Frequency Bands:** 0.4GHz, 0.7GHz, 1.5GHz, 2.7GHz, 4.0GHz, 5.0GHz, 6.0GHz
- **Temperature Conditions:** -40C / 0.9GHz, -40C / 2.0GHz, -40C / 3.0GHz, 25C / 0.9GHz, 25C / 2.0GHz, 25C / 3.0GHz, 105C / 0.9GHz, 105C / 2.0GHz, 105C / 3.0GHz

Insertion Phase Δ vs. Attenuation

- **Temperature Conditions:** -40C, 25C, 105C

(positive phase = electrically shorter)
TYPICAL OPERATING CONDITIONS [S2P vs. FREQUENCY] (-5-)

Min. & Max. Attenuation vs. Frequency

Worst-Case RF1 Return Loss vs. Frequency

Max. Insertion Phase Δ vs. Frequency

Gain Compression vs. Frequency

VCTRL varied from 0.8V to 1.8V

Min. & Max. Attenuation Slope vs. Frequency

Worst-Case RF2 Return Loss vs. Frequency

Gain Compression vs. RF Input Power (dBm)
TYPICAL OPERATING CONDITIONS [S2P @ LOW FREQUENCY, GROUP DELAY] (-6-

Min. & Max. Attenuation vs. Low Frequency

Low-Frequency Attenuation vs. VCTRL

Low-Frequency RF1 Return Loss vs. VCTRL

Low-Frequency RF2 Return Loss vs. VCTRL

Worst-Case Return Loss vs. Low Frequency

Group Delay vs. VCTRL

(C7,C8 set to 0.1uF)
TYPICAL OPERATING CONDITIONS 2GHz, \(V_{DD}=3.3V \) [IP3, IP2, IH2, IH3 vs. \(V_{CTRL}, V_{MODE} \)]

Input IP3 vs. \(V_{CTRL} \)

Output IP3 vs. \(V_{CTRL} \)

Input IP2 vs. \(V_{CTRL} \)

Output IP2 vs. \(V_{CTRL} \)

2nd Harm Input Intercept Point vs. \(V_{CTRL} \)

3rd Harm Input Intercept Point vs. \(V_{CTRL} \)
TYPICAL OPERATING CONDITIONS 2GHz, $V_{DD}=3.3V$ [IP3, IP2, IH2, IH3 vs. V_{CTRL} RF1/RF2 DRIVEN] (-8-)

Input IP3 vs. V_{CTRL}

![Graph of Input IP3 vs. V_{CTRL}]

Output IP3 vs. V_{CTRL}

![Graph of Output IP3 vs. V_{CTRL}]

Input IP2 vs. V_{CTRL}

![Graph of Input IP2 vs. V_{CTRL}]

Output IP2 vs. V_{CTRL}

![Graph of Output IP2 vs. V_{CTRL}]

2nd Harm Input Intercept Point vs. V_{CTRL}

![Graph of 2nd Harm Input Intercept Point vs. V_{CTRL}]

3rd Harm Input Intercept Point vs. V_{CTRL}

![Graph of 3rd Harm Input Intercept Point vs. V_{CTRL}]
Typical Operating Conditions 2GHz, $V_{DD}=3.3V$ [IP3, IP2, IH2, IH3 vs. Attenuation] (-9-)

Input IP3 vs. Attenuation

Output IP3 vs. Attenuation

Input IP2 vs. Attenuation

Output IP2 vs. Attenuation

2nd Harm Input Intercept Point vs. Attenuation

3rd Harm Input Intercept Point vs. Attenuation
TYPICAL OPERATING CONDITIONS 2GHz, $V_{DD}=3.3V$ [IP3, IP2, IH2, IH3 vs. ATTEN, RF1/RF2 DRIVEN] (-10-)

Input IP3 vs. Attenuation

Output IP3 vs. Attenuation

Input IP2 vs. Attenuation

Output IP2 vs. Attenuation

2nd Harm Input Intercept Point vs. Attenuation

3rd Harm Input Intercept Point vs. Attenuation
PACKAGE DRAWING (3x3 16 PIN)
PINOUT & BLOCK DIAGRAM

Voltage Variable RF Attenuator

© 2019 Renesas Electronics Corporation
Pin Description

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 5, 6, 7, 8, 12, 13</td>
<td>GND</td>
<td>Ground these pins as close to the device as possible.</td>
</tr>
<tr>
<td>2, 4, 9, 11</td>
<td>NC</td>
<td>No internal connection. These pins can be left unconnected or connected to ground (recommended).</td>
</tr>
<tr>
<td>3</td>
<td>RF1</td>
<td>RF Port 1. Matched to 50 ohms. Must use an external AC coupling capacitor as close to the device as possible. For low frequency operation increase the capacitor value to result in a low reactance at the frequency of interest.</td>
</tr>
<tr>
<td>10</td>
<td>RF2</td>
<td>RF Port 2. Matched to 50 ohms. Must use an external AC coupling capacitor as close to the device as possible. For low frequency operation increase the capacitor value to result in a low reactance at the frequency of interest.</td>
</tr>
<tr>
<td>14</td>
<td>(V_{\text{CTRL}})</td>
<td>Attenuator control voltage. Apply a voltage in the range as specified in the Operating Conditions. See application section for details about (V_{\text{CTRL}}).</td>
</tr>
<tr>
<td>15</td>
<td>(V_{\text{DD}})</td>
<td>Power supply input. Bypass to GND with capacitors close as possible to pin.</td>
</tr>
<tr>
<td>16</td>
<td>(V_{\text{MODE}})</td>
<td>Attenuator slope control. Set to logic LOW to enable negative attenuation slope. Set to logic HIGH to enable positive attenuation slope.</td>
</tr>
<tr>
<td>—</td>
<td>EP</td>
<td>Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple ground vias to achieve the specified RF performance.</td>
</tr>
</tbody>
</table>
APPLICATIONS INFORMATION

Default Start-up

V_{\text{MODE}} must be tied to either GND or Logic HIGH. If V_{\text{CTRL}} pin is left floating, the part will power up in the minimum attenuation state when V_{\text{MODE}} = GND, or the maximum attenuation state when V_{\text{MODE}} = High.

V_{\text{CTRL}}

The V_{\text{CTRL}} pin is used to control the attenuation of the F2250. With V_{\text{MODE}} set to a logic low (high) this places the device in a negative (positive) slope mode where increasing (decreasing) voltage produces an increasing (a decreasing) attenuation from min attenuation (max attenuation) to max attenuation (min attenuation) respectively. The V_{\text{CTRL}} pin has an on-chip pullup ESD diode so V_{\text{DD}} should be applied before V_{\text{CTRL}} is applied. If this sequencing is not possible, then resistor R2 should be set for 1kΩ to limit the current into the V_{\text{CTRL}} pin.

V_{\text{MODE}}

The V_{\text{MODE}} pin is used to set the attenuation vs. V_{\text{CTRL}} slope. With V_{\text{MODE}} set to logic low (high) this will set the attenuation slope to be negative (positive). A negative (positive) slope is defined as increased (decreased) attenuation with increasing (decreasing) V_{\text{CTRL}} voltage. The EVKIT provides an on-board jumper to manually set the V_{\text{MODE}}. Installing a jumper on header J2 from VMODE to GND (VHI) to set the device for a negative (positive) slope.

RF1 and RF2 Ports

The F2250 is a bi-directional device thus allowing RF1 or RF2 to be used as the RF input. As displayed in the Typical Operating Conditions curves, RF1 shows some enhanced linearity performance and therefore should be used as the RF input, if possible, for best results. This F2250 has been designed to accept high RF input power levels, therefore V_{\text{DD}} must be applied prior to the application of RF power to ensure reliability. DC blocking capacitors are required on the RF pins and should be set to a value that results in a low reactance over the frequency range of interest.

Power Supplies

The supply pin should be bypassed with external capacitors to minimize noise and fast transients. Supply noise can degrade noise figure and fast transients can trigger ESD clamps and cause them to fail. Supply voltage change or transients should have a slew rate smaller than 1V/20μS. In addition, all control pins should remain at 0V (+/-0.3V) while the supply voltage ramps or while it returns to zero.
Control Pin Interface

If control signal integrity is a concern and clean signals cannot be guaranteed due to overshoot, undershoot, ringing, etc., the following circuit at the input of control pins 14 and 16 is recommended as shown below.
Short GND pin to VMODE pin to set for negative attenuation slope. For positive attenuation slope move shorting shunt from VMODE to VHI.
EVkit Picture / Layout (Bottom Side)
EVkit BOM

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C4, C5</td>
<td>3</td>
<td>10nF ±5%, 50V, X7R Ceramic Capacitors (0603)</td>
<td>GRM188R71H103J</td>
<td>Murata</td>
</tr>
<tr>
<td>C2, C3, C6</td>
<td>3</td>
<td>1000pF ±5%, 50V, C0G Ceramic Capacitors (0402)</td>
<td>GRM1555C1H102J</td>
<td>Murata</td>
</tr>
<tr>
<td>C7, C8</td>
<td>2</td>
<td>100pF ±5%, 50V, COG Ceramic Capacitors (0402)</td>
<td>GRM1555C1H101J</td>
<td>Murata</td>
</tr>
<tr>
<td>R1, R2, R5</td>
<td>3</td>
<td>0Ω Resistors (0402)</td>
<td>ERJ-2GE0R00X</td>
<td>Panasonic</td>
</tr>
<tr>
<td>R3, R4</td>
<td>2</td>
<td>100kΩ ±1%, 1/10W, Resistor (0402)</td>
<td>ERJ-2RKF1003X</td>
<td>Panasonic</td>
</tr>
<tr>
<td>J1, J3-J5</td>
<td>4</td>
<td>Edge Launch SMA (0.375 inch pitch ground tabs)</td>
<td>142-0701-851</td>
<td>Emerson Johnson</td>
</tr>
<tr>
<td>J2</td>
<td>1</td>
<td>CONN HEADER VERT SGL 3 X 1 POS GOLD</td>
<td>961103-6404-AR</td>
<td>3M</td>
</tr>
<tr>
<td>U1</td>
<td>1</td>
<td>Voltage Variable Attenuator</td>
<td>F2250NLGK</td>
<td>IDT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Printed Circuit Board</td>
<td>F225x REV (02)</td>
<td>IDT</td>
</tr>
</tbody>
</table>

Top Markings

![Top Markings Diagram]

- **Lot Code**: 04Y
- **Assembler Code**: 446L
- **Part Number**: F2250
- **Date Code [YWW]** (Week 46 of 2014)
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

- **Standard**: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

- **High Quality**: Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

6. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

8. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or disaster to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

9. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

10. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

11. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

12. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESTIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.IDT.com/go/support

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2019 Renesas Electronics Corporation. All rights reserved.