GENERAL DESCRIPTION

The F2258 is a low insertion loss Voltage Variable RF Attenuator (VVA) designed for a multitude of wireless and other RF applications. This device covers a broad frequency range from 50 MHz to 6000 MHz. In addition to providing low insertion loss, the F2258 provides excellent linearity performance over its entire voltage control and attenuation range.

The F2258 uses a single positive supply voltage of 3.15 V to 5.25 V. Another feature includes multi-directional operation meaning the RF input can be applied to either RF1 or RF2 pins. Control voltage ranges from 0 V to 3.6 V.

COMPETITIVE ADVANTAGE

F2258 provides extremely low insertion loss and superb IP3, IP2, Return Loss and Slope Linearity across the control range. Comparing to the previous state-of-the-art for silicon VVAs this device is better as follows:

- Insertion Loss:
 - @ 2000 MHz: 1.4 dB vs. 2.8 dB
 - @ 6000 MHz: 2.7 dB vs. 7.0 dB
- Maximum Attenuation Slope:
 - 33 dB/Volt vs. 53 dB/Volt
- Minimum Return Loss up to 6000 MHz:
 - 12.5 dB vs. 7 dB
- Minimum Output IP3:
 - 31 dBm vs. 15 dBm
- Minimum Input IP2:
 - 87 dBm vs. 80 dBm
- Maximum Operating Temperature:
 - +105 °C vs. +85 °C

APPLICATIONS

- Base Station 2G, 3G, 4G,
- Portable Wireless
- Repeaters and E911 systems
- Digital Pre-Distortion
- Point to Point Infrastructure
- Public Safety Infrastructure
- Satellite Receivers and Modems
- WIMAX Receivers and Transmitters
- Military Systems, JTRS radios
- RFID handheld and portable readers
- Cable Infrastructure
- Wireless LAN
- Test / ATE Equipment

FEATURES

- Low Insertion Loss: 1.4 dB @ 2000 MHz
- Typical / Min IIP3: 65 dBm / 47 dBm
- Typical / Min IIP2: 95 dBm / 87 dBm
- 33.6 dB Attenuation Range
- Bi-directional RF ports
- +34.4 dBm Input P1dB compression
- Linear-in-dB attenuation characteristic
- Supply voltage: 3.15 V to 5.25 V
- VCTRL range: 0 V to 3.6 V using 5 V supply
- +105 °C max operating temperature
- 3 mm x 3 mm, 16-pin QFN package

FUNCTIONAL BLOCK DIAGRAM

![Functional Block Diagram](image)

ORDERING INFORMATION

Omit IDT prefix
0.9 mm height package
Tape & Reel

IDTF2258NLGK8
RF Product Line
Green

© 2019 Renesas Electronics Corporation
ABSOLUTE MAXIMUM RATINGS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DD} to GND</td>
<td>V_{DD}</td>
<td>-0.3</td>
<td>+5.5</td>
<td>V</td>
</tr>
<tr>
<td>V_{CTRL} to GND (with 0 V ≤ V_{DD} ≤ 5.25 V)</td>
<td>V_{CTRL}</td>
<td>-0.3</td>
<td>Minimum (V_{DD}, +4.0)</td>
<td>V</td>
</tr>
<tr>
<td>RF1, RF2 to GND</td>
<td>V_{RF}</td>
<td>-0.3</td>
<td>0.3</td>
<td>V</td>
</tr>
<tr>
<td>RF1 or RF2 Input Power applied for 24 hours maximum (V_{DD} applied @ 2000 MHz and T_{case}=+85°C)</td>
<td>P_{MAX24}</td>
<td>30</td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>T_{J}</td>
<td></td>
<td>150</td>
<td>ºC</td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_{st}</td>
<td>-65</td>
<td>150</td>
<td>ºC</td>
</tr>
<tr>
<td>Lead Temperature (soldering, 10s)</td>
<td></td>
<td></td>
<td>260</td>
<td>ºC</td>
</tr>
<tr>
<td>ElectroStatic Discharge – HBM (JEDEC/ESDA J-001-2012)</td>
<td>V_{ESDHBM}</td>
<td>(Class 1C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ElectroStatic Discharge – CDM (JEDEC 22-C101F)</td>
<td>V_{ESDCDM}</td>
<td>(Class C3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stresses above those listed above may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL AND MOISTURE CHARACTERISTICS

- θ_{JA} (Junction – Ambient) 80.6 ºC/W
- θ_{JC} (Junction – Case) [The Case is defined as the exposed paddle] 5.1 ºC/W
- Moisture Sensitivity Rating (Per J-STD-020) MSL1
F2258 Recommended Operating Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>V_{DD}</td>
<td>$V_{DD} = 3.90$ V to 5.25 V</td>
<td>3.15</td>
<td>5.25</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Control Voltage</td>
<td>V_{CTRL}</td>
<td>$V_{DD} = 3.15$ V to 3.90 V</td>
<td>0</td>
<td>3.6</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>T_{CASE}</td>
<td>Exposed Paddle</td>
<td>-40</td>
<td>+105</td>
<td></td>
<td>°C</td>
</tr>
<tr>
<td>Frequency Range</td>
<td>F_{RF}</td>
<td></td>
<td>50</td>
<td>6000</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>RF Operating Power</td>
<td>$P_{MAX, CW}$</td>
<td>Power can be applied to RF_{1} or RF_{2}</td>
<td>See Figure 1</td>
<td></td>
<td>dBm</td>
<td></td>
</tr>
<tr>
<td>RF1 Port Impedance</td>
<td>Z_{RF1}</td>
<td>Single Ended</td>
<td>50</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>RF2 Port Impedance</td>
<td>Z_{RF2}</td>
<td>Single Ended</td>
<td>50</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
</tbody>
</table>

Figure 1 - MAXIMUM RF INPUT POWER VS. RF FREQUENCY
F2258 Specification

Refer to EVKit / Applications Circuit, \(V_{DD} = +3.3 \text{ V} \), \(T_{CASE} = +25 \text{ °C} \), signal applied to RF1 input, \(F_{RF} = 2000 \text{ MHz} \), minimum attenuation, \(P_{IN} = 0 \text{ dBm} \) for small signal parameters, +20 dBm for single tone linearity tests, +20 dBm per tone for two tone tests, two tone delta frequency = 50 MHz, PCB board traces and connector losses are de-embedded unless otherwise noted. Refer to Typical Operating Curves for performance over entire frequency band.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Current</td>
<td>(I_{DD})</td>
<td></td>
<td>0.5(^1)</td>
<td>1.17</td>
<td>2</td>
<td>mA</td>
</tr>
<tr>
<td>(I_{CTRL}) Current</td>
<td>(I_{CTRL})</td>
<td></td>
<td>-1.0</td>
<td>14</td>
<td></td>
<td>(\mu \text{A})</td>
</tr>
<tr>
<td>Insertion Loss, IL</td>
<td>(A_{MIN})</td>
<td>Minimum Attenuation</td>
<td>1.4</td>
<td>1.9</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Maximum Attenuation</td>
<td>(A_{MAX})</td>
<td></td>
<td>34 (^2)</td>
<td>35</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Insertion Phase (\Delta)</td>
<td>(\Phi_{A_{MAX}})</td>
<td>At 36 dB attenuation relative to Insertion Loss</td>
<td>27</td>
<td></td>
<td></td>
<td>Deg</td>
</tr>
<tr>
<td></td>
<td>(\Phi_{A_{MID}})</td>
<td>At 18 dB attenuation relative to Insertion Loss</td>
<td>10</td>
<td></td>
<td></td>
<td>Deg</td>
</tr>
<tr>
<td>Input 1dB Compression (^3)</td>
<td>(P_{1dB})</td>
<td></td>
<td>34.4</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Minimum RF1 Return Loss over control voltage range</td>
<td>(S_{11})</td>
<td>50 MHz(^4)</td>
<td>16</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>700 MHz</td>
<td>17</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2000 MHz</td>
<td>17</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6000 MHz</td>
<td>15</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Minimum RF2 Return Loss over control voltage range</td>
<td>(S_{22})</td>
<td>50 MHz(^4)</td>
<td>16</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>700 MHz</td>
<td>15</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2000 MHz</td>
<td>16</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6000 MHz</td>
<td>13</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Input IP3</td>
<td>(I_{IP3})</td>
<td></td>
<td>65</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>(I_{IP3_{MIN}})</td>
<td>All attenuation settings</td>
<td>44</td>
<td>47</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Output IP3</td>
<td>(O_{IP3_{MIN}})</td>
<td>Maximum attenuation</td>
<td>35</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Input IP2</td>
<td>(I_{IP2})</td>
<td>(P_{IN} + \text{IM2}{dBc}), IM2 term is (F{1+F2})</td>
<td>95</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td></td>
<td>(I_{IP2_{MIN}})</td>
<td>All attenuation settings</td>
<td>87</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Input IH2</td>
<td>(H_{D2})</td>
<td>(P_{IN} + \text{H2}_{dBc})</td>
<td>90</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Input IH3</td>
<td>(H_{D3})</td>
<td>(P_{IN} + (\text{H3}_{dBc}/2))</td>
<td>54</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>Settling Time</td>
<td>(T_{SETTL0,1dB})</td>
<td>Any 1 dB step in the 0 dB to 33 dB control range 50% (V_{CTRL}) to RF settled to within (\pm 0.1 \text{ dB})</td>
<td>15</td>
<td></td>
<td></td>
<td>(\mu \text{S})</td>
</tr>
</tbody>
</table>

Note 1: Items in min/max columns in **bold italics** are Guaranteed by Test.
Note 2: Items in min/max columns that are not bold/italics are Guaranteed by Design Characterization.
Note 3: The input 1dB compression point is a linearity figure of merit. Refer to Absolute Maximum Ratings section along with Figure 1 for the maximum RF input power vs. RF frequency.
Note 4: Set blocking capacitors C1 & C2 to 0.01\(\mu \text{F} \) to achieve best return loss performance at 50 MHz.
Typical Operating Conditions (TOC)

Unless otherwise noted for the TOC graphs on the following pages, the following conditions apply.

- \(V_{DD} = +3.3 \) V or +5.0 V
- \(T_{CASE} = +25 \) °C
- \(F_{RF} = 2000 \) MHz
- RF trace and connector losses are de-embedded for S-parameters
- Pin = 0 dBm for all small signal tests
- Pin = +20 dBm for single tone linearity tests (RF1 port driven)
- Pin = +20 dBm/tone for two tone linearity tests (RF1 port driven)
- Two tone frequency spacing = 50 MHz
TYPICAL OPERATING CONDITIONS [S2P BROADBAND PERFORMANCE] (-1-)
Typical Operating Conditions [S2P vs. \(V_{CTRL} \)] (- 2 -)

- **Attenuation vs. \(V_{CTRL} \)**
- **Attenuation Slope vs. \(V_{CTRL} \)**
- **RF1 Return Loss vs. \(V_{CTRL} \)**
- **RF2 Return Loss vs. \(V_{CTRL} \)**
- **Insertion Phase \(\Delta \) vs. \(V_{CTRL} \)**
- **Insertion Phase Slope vs. \(V_{CTRL} \)**

(positive phase = electrically shorter)
TYPICAL OPERATING CONDITIONS [S2P vs. VCTRL & TEMPERATURE] (- 3 -)

Attenuation Response vs. VCTRL
- 40C / 0.9GHz
- 25C / 0.9GHz
- 105C / 0.9GHz
- 40C / 2.0GHz
- 25C / 2.0GHz
- 105C / 2.0GHz
- 40C / 3.0GHz
- 25C / 3.0GHz
- 105C / 3.0GHz

RF1 Return Loss vs. VCTRL
- 40C / 0.9GHz
- 25C / 0.9GHz
- 105C / 0.9GHz
- 40C / 2.0GHz
- 25C / 2.0GHz
- 105C / 2.0GHz
- 40C / 3.0GHz
- 25C / 3.0GHz
- 105C / 3.0GHz

Insertion Phase Δ vs. VCTRL
(positive phase = electrically shorter)

Attenuation Slope vs. VCTRL
- 40C / 0.9GHz
- 25C / 0.9GHz
- 105C / 0.9GHz
- 40C / 2.0GHz
- 25C / 2.0GHz
- 105C / 2.0GHz
- 40C / 3.0GHz
- 25C / 3.0GHz
- 105C / 3.0GHz

RF2 Return Loss vs. VCTRL
- 40C / 0.9GHz
- 25C / 0.9GHz
- 105C / 0.9GHz
- 40C / 2.0GHz
- 25C / 2.0GHz
- 105C / 2.0GHz
- 40C / 3.0GHz
- 25C / 3.0GHz
- 105C / 3.0GHz

Insertion Phase Slope vs. VCTRL
Typical Operating Conditions [S2P vs. Attenuation & Temperature] (-4-)

RF1 Return Loss vs. Attenuation

RF2 Return Loss vs. Attenuation

Insertion Phase Δ vs. Attenuation

(positive phase = electrically shorter)
TYPICAL OPERATING CONDITIONS [S2P vs. FREQUENCY] (-5-)

Min & Max. Attenuation vs. Frequency

Min. & Max. Attenuation Slope vs. Frequency

VCTRL varied from 0.8V to 1.8V

Worst-Case RF1 Return Loss vs. Frequency

Worst-Case RF2 Return Loss vs. Frequency

Max. Insertion Phase Δ vs. Frequency

Gain Compression vs. Frequency

(positive phase = electrically shorter)
TYPICAL OPERATING CONDITIONS [S2P @ LOW FREQUENCY, GROUP DELAY] (- 6 -)

Min & Max. Attenuation vs. Low Frequency

Low-Frequency RF1 Return Loss vs. VCTRL

Worst-Case Return Loss vs. Low Frequency

Group Delay vs. VCTRL
Typical Operating Conditions 2GHz, $V_{DD}=3.3$V [IP3, IP2, IH2, IH3 vs. V_{CTRL}]
TYPICAL OPERATING CONDITIONS 2GHz, V_{DD}=3.3V [IP3, IP2, IH2, IH3 vs. V_{CTRL}, RF1/RF2 Driven] (~8~)

- **Input IP3 vs. V_{CTRL}**
- **Input IP2 vs. V_{CTRL}**
- **2nd Harm Input Intercept Point vs. V_{CTRL}**
- **Output IP3 vs. V_{CTRL}**
- **Output IP2 vs. V_{CTRL}**
- **3rd Harm Input Intercept Point vs. V_{CTRL}**

Graphs showing the typical operating conditions for a Voltage Variable RF Attenuator.

- The diagrams illustrate the input and output IP3, IP2, and the 2nd and 3rd harmonic input intercept points against V_{CTRL} for different temperatures (-40°C, 25°C, 105°C) and RF drivings (RF1, RF2).
TYPICAL OPERATING CONDITIONS 2GHz, $V_{DD}=3.3V$ [IP3, IP2, IH2, IH3 vs. ATTENUATION] (-9-)

Input IP3 vs. Attenuation

Output IP3 vs. Attenuation

Input IP2 vs. Attenuation

Output IP2 vs. Attenuation

2nd Harm Input Intercept Point vs. Attenuation

3rd Harm Input Intercept Point vs. Attenuation
TYPICAL OPERATING CONDITIONS 2GHz, V_{DD}=3.3V [IP3, IP2, IH2, IH3 vs. V_{CTRL}, RF1/RF2 Driven] (~ 10 ~)

Input IP3 vs. Attenuation

Output IP3 vs. Attenuation

Input IP2 vs. Attenuation

Output IP2 vs. Attenuation

2nd Harm Input Intercept Point vs. Attenuation

3rd Harm Input Intercept Point vs. Attenuation
PACKAGE DRAWING

(3mm x 3mm 16-pin QFN), NLG16

16LD QFN 3X3 (0.5MM PITCH)
NOTES:
1. ALL DIMENSION ARE IN mm. ANGLES IN DEGREES.
2. TOP DOWN VIEW AS VIEWED ON PCB.
3. COMPONENT OUTLINE SHOW FOR REFERENCE IN GREEN.
4. LAND PATTERN IN BLUE, YN00 PATTERN ASSUMED.
5. LAND PATTERN RECOMMENDATION PER IPC-7351B GENERIC REQUIREMENT.
 FOR SURFACE MOUNT DESIGN AND LAND PATTERN.
PIN DESCRIPTION

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>4, 9</td>
<td>GND</td>
<td>Ground these pins as close to the device as possible.</td>
</tr>
<tr>
<td>3</td>
<td>RF2</td>
<td>RF Port 2. Matched to 50 ohms. Must use an external AC coupling capacitor as close to the device as possible. For low frequency operation increase the capacitor value to result in a low reactance at the frequency of interest.</td>
</tr>
<tr>
<td>5</td>
<td>V\text{DD}</td>
<td>Power supply input. Bypass to GND with capacitors close as possible to pin.</td>
</tr>
<tr>
<td>1, 2, 6, 8, 11, 12, 13, 14, 15, 16</td>
<td>NC</td>
<td>No internal connection. These pins can be left unconnected or connected to ground.</td>
</tr>
<tr>
<td>7</td>
<td>V\text{CTRL}</td>
<td>Attenuator control voltage. Apply a voltage in the range as specified in the Operating Conditions Table. See application section for details about V\text{CTRL}.</td>
</tr>
<tr>
<td>10</td>
<td>RF1</td>
<td>RF Port 1. Matched to 50 ohms. Must use an external AC coupling capacitor as close to the device as possible. For low frequency operation increase the capacitor value to result in a low reactance at the frequency of interest.</td>
</tr>
<tr>
<td>—</td>
<td>EP</td>
<td>Exposed Pad. Internally connected to GND. Solder this exposed pad to a PCB pad that uses multiple ground vias to achieve the specified RF performance.</td>
</tr>
</tbody>
</table>
APPLICATIONS INFORMATION

Default Start-up

The \(V_{CTRL} \) pin has an internal pull-down resistor. If left floating, the part will power up in the minimum attenuation state.

VCTRL

The \(V_{CTRL} \) pin is used to control the attenuation of the F2258. With \(V_{DD} = 5 \) V the control range of \(V_{CTRL} \) is from 0 V (minimum attenuation) to 3.6 V (maximum attenuation). For other settings of \(V_{DD} \) refer to the Operating Conditions Table. Apply \(V_{DD} \) before applying voltage to the \(V_{CTRL} \) pin to prevent damage to the on-chip pull-up ESD diode. If this sequencing is not possible, then set resistor R2 to 1kΩ to limit the current into the \(V_{CTRL} \) pin.

RF1 and RF2 Ports

The F2258 is a bi-directional device thus allowing RF1 or RF2 to be used as the RF input. As displayed in the Typical Operating Conditions curves, RF1 shows enhanced linearity. \(V_{DD} \) must be applied prior to the application of RF power to ensure reliability. DC blocking capacitors are required on the RF pins and should be set to a value that results in a low reactance over the frequency range of interest.

Power Supplies

The supply pin should be bypassed with external capacitors to minimize noise and fast transients. Supply noise can degrade noise figure and fast transients can trigger ESD clamps and cause them to fail. Supply voltage change or transients should have a slew rate smaller than 1V/20uS. In addition, all control pins should remain at 0V (+/-0.3V) while the supply voltage ramps or while it returns to zero.

Control Pin Interface

If control signal integrity is a concern and clean signals cannot be guaranteed due to overshoot, undershoot, ringing, etc., the following circuit at the input of control pin 7 is recommended as shown below.
EVKIT / APPLICATIONS CIRCUIT

[Diagram of Voltage Variable RF Attenuator]
EVKit BOM (Rev 02)

<table>
<thead>
<tr>
<th>Item #</th>
<th>Part Reference</th>
<th>QTY</th>
<th>DESCRIPTION</th>
<th>Mfr. Part #</th>
<th>Mfr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C3, C6</td>
<td>2</td>
<td>10nF ±5%, 50V, X7R Ceramic Capacitor (0603)</td>
<td>GRM188R71H103J</td>
<td>Murata</td>
</tr>
<tr>
<td>2</td>
<td>C4, C5</td>
<td>2</td>
<td>1000pF ±5%, 50V, C0G Ceramic Capacitor (0402)</td>
<td>GRM1555C1H102J</td>
<td>Murata</td>
</tr>
<tr>
<td>3</td>
<td>C1, C2</td>
<td>2</td>
<td>100pF ±5%, 50V, C0G Ceramic Capacitor (0402)</td>
<td>GRM1555C1H101J</td>
<td>Murata</td>
</tr>
<tr>
<td>4</td>
<td>R1, R2</td>
<td>2</td>
<td>Ω Resistors (0402)</td>
<td>ERJ-2GE0R00X</td>
<td>Panasonic</td>
</tr>
<tr>
<td>5</td>
<td>J1, J2, J3, J4</td>
<td>4</td>
<td>Edge Launch SMA (0.375 inch pitch ground tabs)</td>
<td>142-0701-851</td>
<td>Emerson Johnson</td>
</tr>
<tr>
<td>6</td>
<td>U1</td>
<td>1</td>
<td>Voltage Variable Attenuator</td>
<td>F2258NLGK</td>
<td>IDT</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>1</td>
<td>Printed Circuit Board</td>
<td>F2258 EVKIT REV 02</td>
<td>IDT</td>
</tr>
</tbody>
</table>

Top Markings

- **Lot Code:** 04Y
- **Assembler Code:** 446L
- **Date Code [YWW]:** (Week 46 of 2014)
Revision History Sheet

<table>
<thead>
<tr>
<th>Rev</th>
<th>Date</th>
<th>Page</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2015-Aug-03</td>
<td></td>
<td>Initial Release</td>
</tr>
<tr>
<td>1</td>
<td>2017-Jan-20</td>
<td>4</td>
<td>Increased the Max limits for I_{DD} and I_{CTRL}</td>
</tr>
</tbody>
</table>
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.) and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or disaster to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters
TOYOSU FORESEA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.IDT.com/go/support

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2019 Renesas Electronics Corporation. All rights reserved.