Clock Generator for Cavium Processors

ICS8430S803I

DATA SHEET

General Description

The ICS8430S803I is a PLL-based clock generator specifically designed for Cavium Networks SoC processors. This high performance device is optimized to generate the processor core reference clock, the DDR reference clocks, the PCI/PCI-X bus clocks, and the clocks for both the Gigabit Ethernet MAC and PHY. The clock generator offers low-jitter, low-skew clock outputs, and edge rates that easily meet the input requirements for the CN30XX/CN31XX/CN38XX/CN58XX processors. The output frequencies are generated from a 25MHz external input source or an external 25MHz parallel resonant crystal. The extended temperature range of the ICS8430S803I supports telecommunication, networking, and storage requirements.

Features

- One selectable differential output pair for DDR 533/400/667, LVPECL, LVDS interface levels
- Nine LVCMOS/ LVTTL outputs, 23Ω typical output impedance
- Selectable external crystal or differential input source
- Crystal oscillator interface designed for 25MHz, parallel resonant crystal
- Differential input pair (PCLK, nPCLK) accepts LVPECL, LVDS, CML, input levels
- Internal resistor bias on nPCLK pin allows the user to drive PCLK input with external single-ended (LVCMOS/ LVTTL) input levels
- Power supply modes: CORE / OUTPUT
 3.3V / 3.3V LVDS, LVPECL, LVCMOS
 3.3V / 2.5V LVCMOS
- -40°C to 85°C ambient operating temperature
- Available in lead-free (RoHS 6) package

Applications

- Systems using Cavium Processors
- CPE Gateway Design
- Home Media Servers
- 802.11n AP or Gateway
- Soho Secure Gateway
- Soho SME Gateway
- Wireless Soho and SME VPN Solutions
- Wired and Wireless Network Security
- Web Servers and Exchange Servers

Pin Assignment

ICS8430S803I
48 TQFP, E-Pad
7mm x 7mm x 1mm package
body
Y Package
Top View

- VDD
- nOE_D
- GND
- nPLL_SEL
- XTAL_IN
- XTAL_OUT
- nXTAL_SEL
- PCLK
- nPCLK
- nOE_C
- nOE_B
- GND
- VDDO_REF
- nOE_E
- GND
- QREF0
- QREF1
- QREF2
- GND
- GND
- VDD
- nOE_A
- SPI_SEL1
- SPI_SEL0
- nPCI_SEL1
- nPCI_SEL0
- DDR_SEL1
- DDR_SEL0
- nOCTA
- nQA
- QA
- VDDA
- nLVDS_SEL
- nPLL_SEL
- XTAL_IN
- XTAL_OUT
- nXTAL_SEL
- PCLK
- nPCLK
- nOE_C
- nOE_B
- GND
- VDD
- nOE_E
- GND
- QREF0
- QREF1
- QREF2
- GND
- VDDO_REF
- nOE_E
- GND
- QREF0
- QREF1
- QREF2
- GND
- VDDO_REF
- nOE_E
- GND
- QREF0
- QREF1
- QREF2
- GND
- VDDO_REF
- nOE_E
- GND
- QREF0
- QREF1
- QREF2
- GND
- VDDO_REF
- nOE_E
- GND
- QREF0
- QREF1
- QREF2
- GND
- VDDO_REF
- nOE_E
- GND
- QREF0
- QREF1
- QREF2
- GND
- VDDO_REF
- nOE_E
- GND
- QREF0
- QREF1
- QREF2
- GND
- VDDO_REF
- nOE_E
- GND
- QREF0
- QREF1
- QREF2
- GND
- VDDO_REF
- nOE_E
- GND
- QREF0
- QREF1
- QREF2
- GND
- VDDO_REF
- nOE_E
- GND
- QREF0
- QREF1
- QREF2
- GND
- VDDO_REF
- nOE_E
- GND
- QREF0
- QREF1
- QREF2
- GND
- VDDO_REF
- nOE_E
- GND
- QREF0
- QREF1
- QREF2
- GND
- VDDO_REF
- nOE_E
- GND
- QREF0
- QREF1
- QREF2
- GND
- VDDO_REF
- nOE_E
- GND
- QREF0
- QREF1
- QREF2
- GND
- VDDO_REF
- nOE_E
- GND
- QREF0
- QREF1
- QREF2
- GND
- VDDO_REF
- nOE_E
- GND
- QREF0
- QREF1
- QREF2
- GND
- VDDO_REF
- nOE_E
- GND
- QREF0
- QREF1
- QREF2
- GND
- VDDO_REF
- nOE_E
- GND
- QREF0
- QREF1
- QREF2
- GND
- VDDO_REF
- nOE_E
- GND
- QREF0
- QREF1
- QREF2
- GND
- VDDO_REF
- nOE_E
- GND
- QREF0
- QREF1
- QREF2
- GND
- VDDO_REF
- nOE_E
- GND
- QREF0
- QREF1
- QREF2
- GND
- VDDO_REF
- nOE_E
- GND
- QREF0
- QREF1
- QREF2
- GND
- VDDO_REF
- nOE_E
- GND
- QREF0
- QREF1
- QREF2
- GND
- VDDO_REF
- nOE_E
- GND
- QREF0
- QREF1
- QREF2
- GND
- VDDO_REF
- nOE_E
- GND
- QREF0
- QREF1
- QREF2
- GND
- VDDO_REF
- nOE_E
- GND
- QREF0
- QREF1
- QREF2
- GND
- VDDO_REF
- nOE_E
- GND
- QREF0
- QREF1
- QREF2
- GND
- VDDO_REF
- nOE_E
- GND
- QREF0
- QREF1
- QREF2
- GND
- VDDO_REF
- nOE_E
- GND
- QREF0
- QREF1
- QREF2
- GND
- VDDO_REF
- nOE_E
- GND
- QREF0
- QREF1
- QREF2
- GND
- VDDO_REF
- nOE_E
- GND
- QREF0
- QREF1
- QREF2
- GND
- VDDO_REF
- nOE_E
- GND
- QREF0
- QREF1
- QREF2
- GND
- VDDO_REF
- nOE_E
- GND
- QREF0
- QREF1
- QREF2
- GND
- VDDO_REF
- nOE_E
- GND
- QREF0
- QREF1
- QREF2
- GND
- VDDO_REF
- nOE_E
- GND
- QREF0
<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 13, 23</td>
<td>V_{DD}</td>
<td>Power</td>
<td>Core supply pins.</td>
</tr>
<tr>
<td>2</td>
<td>nOE_{D}</td>
<td>Input Pulldown</td>
<td>Active LOW output enable for Bank D outputs. When logic HIGH, the outputs are high impedance (HI-Z). When logic LOW, the outputs are enabled. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>3, 12, 30, 31, 39, 42, 46</td>
<td>GND</td>
<td>Power</td>
<td>Power supply ground.</td>
</tr>
<tr>
<td>4</td>
<td>nPLL_SEL</td>
<td>Input Pulldown</td>
<td>PLL bypass. When LOW, PLL is enabled. When HIGH, PLL is bypassed. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>5, 6</td>
<td>XTAL_IN, XTAL_OUT</td>
<td>Input</td>
<td>Parallel resonant crystal interface. XTAL_OUT is the output, XTAL_IN is the input.</td>
</tr>
<tr>
<td>7</td>
<td>nXTAL_SEL</td>
<td>Input Pulldown</td>
<td>Selects XTAL input when LOW. Selects differential clock (PCLK, nPCLK) input when HIGH. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>8</td>
<td>PCLK</td>
<td>Input Pulldown</td>
<td>Non-inverting differential clock input.</td>
</tr>
<tr>
<td>9</td>
<td>nPCLK</td>
<td>Input Pulldown/Pulldown</td>
<td>Inverting differential clock input. Internal resistor bias to V_{DD}/2.</td>
</tr>
<tr>
<td>10</td>
<td>nOE_C</td>
<td>Input Pulldown</td>
<td>Active LOW output enable for Bank C output. When logic HIGH, the output is high impedance (HI-Z). When logic LOW, QC output is enabled. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>11</td>
<td>nOE_B</td>
<td>Input Pulldown</td>
<td>Active LOW output enable for Bank B outputs. When logic HIGH, the outputs are high impedance (HI-Z). When logic LOW, the outputs are enabled. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>14</td>
<td>nOE_A</td>
<td>Input Pulldown</td>
<td>Active LOW output enable for Bank A outputs. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>15, 16</td>
<td>SPI_SEL1, SPI_SEL0</td>
<td>Input Pulldown</td>
<td>Selects the SPI PLL clock reference frequency. See Table 3D.</td>
</tr>
<tr>
<td>17, 18</td>
<td>PCI_SEL1, PCI_SEL0</td>
<td>Input Pulldown</td>
<td>Selects the PCI, PCI-X reference clock output frequency. See Table 3C. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>19, 20</td>
<td>DDR_SEL1, DDR_SEL0</td>
<td>Input Pulldown</td>
<td>Selects the DDR reference clock output frequency. See Table 3B. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>21, 22</td>
<td>nQA, QA</td>
<td>Output</td>
<td>Differential output pair. Selectable between LVPECL and LVDS interface levels.</td>
</tr>
<tr>
<td>24</td>
<td>V_{DDA}</td>
<td>Power</td>
<td>Analog supply pin.</td>
</tr>
<tr>
<td>25, 28</td>
<td>V_{DDO_B}</td>
<td>Power</td>
<td>Bank B output supply pins. 3.3 V or 2.5V supply.</td>
</tr>
<tr>
<td>26, 27</td>
<td>QB1, QB0</td>
<td>Output</td>
<td>Single-ended Bank B outputs. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>29</td>
<td>nOE_REF</td>
<td>Input Pulldown</td>
<td>Active LOW output enabled. When logic HIGH, the QREF[2:0] outputs are high impedance (HI-Z). When logic LOW, the QREF[2:0] outputs are enabled. LVCMOS/ LVTTL interface levels.</td>
</tr>
<tr>
<td>32</td>
<td>CORE_SEL</td>
<td>Input Pulldown</td>
<td>Selects the processor core clock output frequency. The output frequency is 50MHz when LOW, and 33.333MHz when HIGH. See Table 3A. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>33, 34</td>
<td>QD1, QD0</td>
<td>Output</td>
<td>Single-end Bank D outputs. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>35</td>
<td>QC</td>
<td>Output</td>
<td>Single-end Bank C output. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>36</td>
<td>V_{DDO_CD}</td>
<td>Power</td>
<td>Bank C and Bank D output supply pin. 3.3 V or 2.5V supply.</td>
</tr>
</tbody>
</table>

Pin descriptions continue on the next page.
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{IN})</td>
<td>Input Capacitance</td>
<td></td>
<td>2</td>
<td>pF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_{PD})</td>
<td>Power Dissipation Capacitance (per output)</td>
<td>(V_{DD}, V_{DDO_X} = 3.465V)</td>
<td>10</td>
<td>pF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{DD} = 3.465V, V_{DDO_X} = 2.625V)</td>
<td>10</td>
<td>pF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_{PULLUP})</td>
<td>Input Pullup Resistor</td>
<td></td>
<td>51</td>
<td>kΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_{PULLDOWN})</td>
<td>Input Pulldown Resistor</td>
<td></td>
<td>51</td>
<td>kΩ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_{OUT})</td>
<td>Output Impedance</td>
<td>(QB_{[0:1]}, QC, QD_{[0:1]}, QE, QREF_{[0:2]})</td>
<td>(V_{DDO_X} = 3.465V)</td>
<td>23</td>
<td>Ω</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(QB_{[0:1]}, QC, QD_{[0:1]}, QE, QREF_{[0:2]})</td>
<td>(V_{DDO_X} = 2.625V)</td>
<td>26</td>
<td>Ω</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: \(V_{DDO_X} \) denotes \(V_{DDO_B}, V_{DDO_CD}, V_{DDO_E} \) and \(V_{DDO_REF} \).
Function Tables

Table 3A. Control Input Function Table

<table>
<thead>
<tr>
<th>Input</th>
<th>Output Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORE_SEL</td>
<td>QB[0:1]</td>
</tr>
<tr>
<td>0</td>
<td>50MHz (default)</td>
</tr>
<tr>
<td>1</td>
<td>33.333MHz</td>
</tr>
</tbody>
</table>

Table 3B. Control Input Function Table

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Output Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDR_SEL1</td>
<td>DDR_SEL0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3C. Control Input Function Table

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Output Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCI_SEL1</td>
<td>PCI_SEL0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 3D. Control Input Function Table

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Output Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPI_SEL1</td>
<td>SPI_SEL0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3E. Control Input Function Table

<table>
<thead>
<tr>
<th>Input</th>
<th>Output Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>nLVDS_SEL</td>
<td>QA, nQA</td>
</tr>
<tr>
<td>0</td>
<td>LVDS (default)</td>
</tr>
<tr>
<td>1</td>
<td>LVPECL</td>
</tr>
</tbody>
</table>
Absolute Maximum Ratings

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

<table>
<thead>
<tr>
<th>Item</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage, (V_{DD})</td>
<td>4.6V</td>
</tr>
<tr>
<td>Inputs, (V_I)</td>
<td></td>
</tr>
<tr>
<td>XTAL_IN</td>
<td>0V to (V_{DD})</td>
</tr>
<tr>
<td>Other Inputs</td>
<td>-0.5V to (V_{DD} + 0.5V)</td>
</tr>
<tr>
<td>Outputs, (V_{O}) (LVCMOS)</td>
<td>-0.5V to (V_{DD} + 0.5V)</td>
</tr>
<tr>
<td>Outputs, (I_{O}) (LVDS)</td>
<td></td>
</tr>
<tr>
<td>Continuous Current</td>
<td>10mA</td>
</tr>
<tr>
<td>Surge Current</td>
<td>15mA</td>
</tr>
<tr>
<td>Outputs, (I_{O}) (LVPECL)</td>
<td></td>
</tr>
<tr>
<td>Continuous Current</td>
<td>50mA</td>
</tr>
<tr>
<td>Surge Current</td>
<td>100mA</td>
</tr>
<tr>
<td>Package Thermal Impedance, (\theta_{JA})</td>
<td>33.1°C/W (0 mps)</td>
</tr>
<tr>
<td>Storage Temperature, (T_{STG})</td>
<td>-65°C to 150°C</td>
</tr>
</tbody>
</table>

DC Electrical Characteristics

Table 4A. LVCMOS Power Supply DC Characteristics, \(V_{DD} = V_{DDO,X} = 3.3V \pm 5\% \), \(T_{A} = -40°C \) to 85°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{DD})</td>
<td>Core Supply Voltage</td>
<td></td>
<td>(3.135)</td>
<td>(3.3)</td>
<td>(3.465)</td>
<td>V</td>
</tr>
<tr>
<td>(V_{DDA})</td>
<td>Analog Supply Voltage</td>
<td>(V_{DD} - 0.2)</td>
<td>(3.3)</td>
<td>(V_{DD})</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{DDO,X})</td>
<td>Output Supply Voltage</td>
<td></td>
<td>(3.135)</td>
<td>(3.3)</td>
<td>(3.465)</td>
<td>V</td>
</tr>
<tr>
<td>(I_{DD})</td>
<td>Power Supply Current</td>
<td></td>
<td>(150)</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>(I_{DDA})</td>
<td>Analog Supply Current</td>
<td>(20)</td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>(I_{DDO,X})</td>
<td>Output Supply Current</td>
<td>No Load, (nLVDS_SEL = 0)</td>
<td>(39)</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

NOTE: \(V_{DDO,X} \) denotes \(V_{DDO,B} \), \(V_{DDO,CD} \) and \(V_{DDO_REF} \).

Table 4B. LVCMOS Power Supply DC Characteristics, \(V_{DD} = 3.3V \pm 5\% \), \(V_{DDO,X} = 2.5V \pm 5\% \), \(T_{A} = -40°C \) to 85°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{DD})</td>
<td>Core Supply Voltage</td>
<td></td>
<td>(3.135)</td>
<td>(3.3)</td>
<td>(3.465)</td>
<td>V</td>
</tr>
<tr>
<td>(V_{DDA})</td>
<td>Analog Supply Voltage</td>
<td>(V_{DD} - 0.2)</td>
<td>(3.3)</td>
<td>(V_{DD})</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>(V_{DDO,X})</td>
<td>Output Supply Voltage</td>
<td></td>
<td>(2.375)</td>
<td>(2.5)</td>
<td>(2.625)</td>
<td>V</td>
</tr>
<tr>
<td>(I_{DD})</td>
<td>Power Supply Current</td>
<td></td>
<td>(150)</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>(I_{DDA})</td>
<td>Analog Supply Current</td>
<td>(20)</td>
<td></td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>(I_{DDO,X})</td>
<td>Output Supply Current</td>
<td>No Load, (nLVDS_SEL = 0)</td>
<td>(27)</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

NOTE: \(V_{DDO,X} \) denotes \(V_{DDO,B} \), \(V_{DDO,CD} \) and \(V_{DDO_REF} \).
Table 4C. LVPECL Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = -40°C$ to $85°C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DD}</td>
<td>Core Supply Voltage</td>
<td></td>
<td>3.135</td>
<td>3.3</td>
<td>3.465</td>
<td>V</td>
</tr>
<tr>
<td>V_{DDA}</td>
<td>Analog Supply Voltage</td>
<td>$V_{DD} - 0.20$</td>
<td></td>
<td>3.3</td>
<td>V_{DD}</td>
<td>V</td>
</tr>
<tr>
<td>I_{GND}</td>
<td>Power Supply Current</td>
<td>nLVDS_SEL = 1</td>
<td>186</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>I_{DDA}</td>
<td>Analog Supply Current</td>
<td></td>
<td>20</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

Table 4D. LVDS Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = -40°C$ to $85°C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DD}</td>
<td>Core Supply Voltage</td>
<td></td>
<td>3.135</td>
<td>3.3</td>
<td>3.465</td>
<td>V</td>
</tr>
<tr>
<td>V_{DDA}</td>
<td>Analog Supply Voltage</td>
<td>$V_{DD} - 0.20$</td>
<td></td>
<td>3.3</td>
<td>V_{DD}</td>
<td>V</td>
</tr>
<tr>
<td>I_{DD}</td>
<td>Power Supply Current</td>
<td>nLVDS_SEL = 0</td>
<td>150</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>I_{DDA}</td>
<td>Analog Supply Current</td>
<td></td>
<td>20</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

Table 4E. LVC莫斯/LVTTL DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO,X} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $T_A = -40°C$ to $85°C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IH}</td>
<td>Input High Voltage</td>
<td>$V_{DD} = V_{IN} = 3.465V$</td>
<td>2.2</td>
<td>$V_{DD} + 0.3$</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Input Low Voltage</td>
<td>$V_{DD} = 3.465V, V_{IN} = 0V$</td>
<td>-0.3</td>
<td>0.8</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{IH}</td>
<td>Input High Current</td>
<td>DDR_SEL[0:1], nPLL_SEL, nLVDS_SEL, PCI_SEL[0:1], nOE_REF, SPI_SEL[0:1], nOE_[A:E], nXTAL_SEL, CORE_SEL</td>
<td>$V_{DD} = V_{IN} = 3.465V$</td>
<td>150</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>I_{IL}</td>
<td>Input Low Current</td>
<td>DDR_SEL[0:1], nPLL_SEL, nLVDS_SEL, PCI_SEL[0:1], nOE_REF, SPI_SEL[0:1], nOE_[A:E], nXTAL_SEL, CORE_SEL</td>
<td>$V_{DD} = 3.465V, V_{IN} = 0V$</td>
<td>-10</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>V_{OH}</td>
<td>Output High Voltage</td>
<td>$V_{DDO,X} = 3.465V, I_{OH} = -12mA$</td>
<td>2.6</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Output Low Voltage</td>
<td>$V_{DDO,X} = 3.465V, I_{OL} = 12mA$</td>
<td>0.65</td>
<td></td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

NOTE: $V_{DDO,X}$ denotes $V_{DDO,B}$, $V_{DDO,CD}$, $V_{DDO,E}$ and $V_{DDO,REF}$.

© 2019 Renesas Electronics Corporation
Table 4F. LVPECL DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = -40^\circ C$ to $85^\circ C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{IH}</td>
<td>Input High Current</td>
<td>PCLK, nPCLK</td>
<td>$V_{DD} = V_{IN} = 3.465V$</td>
<td>150</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>I_{IL}</td>
<td>Input Low Current</td>
<td>PCLK</td>
<td>$V_{DD} = 3.465V, V_{IN} = 0V$</td>
<td>-10</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nPCLK</td>
<td>$V_{DD} = 3.465V, V_{IN} = 0V$</td>
<td>-150</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>V_{PP}</td>
<td>Peak-to-Peak Voltage</td>
<td></td>
<td></td>
<td>0.3</td>
<td>1.0</td>
<td>V</td>
</tr>
<tr>
<td>V_{CMR}</td>
<td>Common Mode Input Voltage; NOTE 1</td>
<td></td>
<td></td>
<td>GND + 1.5</td>
<td></td>
<td>V_{DD}</td>
</tr>
<tr>
<td>V_{OH}</td>
<td>Output High Voltage; NOTE 2</td>
<td></td>
<td></td>
<td>$V_{DD} - 1.4$</td>
<td></td>
<td>$V_{DD} - 0.9$</td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Output Low Voltage; NOTE 2</td>
<td></td>
<td></td>
<td>$V_{DD} - 2.0$</td>
<td></td>
<td>$V_{DD} - 1.7$</td>
</tr>
<tr>
<td>V_{SWING}</td>
<td>Peak-to-Peak Output Voltage Swing</td>
<td></td>
<td></td>
<td>0.6</td>
<td>1.0</td>
<td>V</td>
</tr>
</tbody>
</table>

NOTE 1: Common mode input voltage is defined as V_{IH}.
NOTE 2: Outputs terminated with 50Ω to $V_{DD} - 2V$.

Table 4G. LVDS DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = -40^\circ C$ to $85^\circ C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OD}</td>
<td>Differential Output Voltage</td>
<td></td>
<td>300</td>
<td>600</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>ΔV_{OD}</td>
<td>V_{OD} Magnitude Change</td>
<td></td>
<td>50</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{OS}</td>
<td>Offset Voltage</td>
<td></td>
<td>1.04</td>
<td>1.14</td>
<td>1.24</td>
<td>V</td>
</tr>
<tr>
<td>ΔV_{OS}</td>
<td>V_{OS} Magnitude Change</td>
<td></td>
<td>50</td>
<td>mV</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Crystal Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode of Oscillation</td>
<td>Fundamental</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
<td>25</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equivalent Series Resistance (ESR)</td>
<td></td>
<td>50</td>
<td>Ω</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shunt Capacitance</td>
<td></td>
<td>7</td>
<td>pF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Characterized using an 18pF parallel resonant crystal.
AC Electrical Characteristics

Table 6. AC Characteristics, \(V_{DD} = 3.3V \pm 5\% \), \(V_{DDO,X} = 3.3V \pm 5\% \) or \(2.5V \pm 5\% \), \(T_A = -40^\circ C \) to \(85^\circ C \)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{OUT})</td>
<td>Output Frequency</td>
<td>QA, nQA DDR_SEL[1:0] = 00</td>
<td>133.333 MHz</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QA, nQA DDR_SEL[1:0] = 01</td>
<td>100 MHz</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QA, nQA DDR_SEL[1:0] = 10</td>
<td>83.333 MHz</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QA, nQA DDR_SEL[1:0] = 11</td>
<td>125 MHz</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QBx CORE_SEL = 0</td>
<td>50 MHz</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QBx CORE_SEL = 1</td>
<td>33.333 MHz</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QC PCI_SEL[1:0] = 00</td>
<td>133.333 MHz</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QC PCI_SEL[1:0] = 01</td>
<td>100 MHz</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QC PCI_SEL[1:0] = 10</td>
<td>66.667 MHz</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QC PCI_SEL[1:0] = 11</td>
<td>33.333 MHz</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QDx SPI_SEL[1:0] = 00</td>
<td>100 MHz</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QDx SPI_SEL[1:0] = 01</td>
<td>125 MHz</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QDx SPI_SEL[1:0] = 10</td>
<td>80 MHz</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QE</td>
<td>125 MHz</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QREFx</td>
<td>25 MHz</td>
<td></td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>(t_{sk(b)})</td>
<td>Bank Skew; NOTE 1, 2</td>
<td>QREFx Using PCLK, nPCLK</td>
<td>25 ps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_{sk(pp)})</td>
<td>Part-to-Part Skew; NOTE 2, 3</td>
<td>QREFx Using PCLK, nPCLK</td>
<td>350 ps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_{jit(\theta)})</td>
<td>RMS Phase Jitter, (Random); NOTE 5</td>
<td>QREFx 25MHz (10kHz to 5MHz)</td>
<td>0.637 ps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>QREFx 125MHz (1.875MHz to 20MHz)</td>
<td>0.557 ps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_{jit(per)})</td>
<td>Period Jitter (pk-pk); NOTE 4, 11</td>
<td>QA, nQA 133.33MHz; NOTE 6</td>
<td>115 ps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>QA, nQA 100MHz; NOTE 7</td>
<td>115 ps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>QA, nQA 133.33MHz; NOTE 8</td>
<td>115 ps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>QA, nQA 100MHz; NOTE 9</td>
<td>115 ps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>QA, nQA 83.33MHz; NOTE 10</td>
<td>115 ps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>QBx 50MHz; NOTE 6</td>
<td>95 ps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>QBx 50MHz; NOTE 7</td>
<td>95 ps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>QBx 50MHz; NOTE 8</td>
<td>95 ps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>QBx 50MHz; NOTE 9</td>
<td>95 ps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>QBx 50MHz; NOTE 10</td>
<td>95 ps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>QC 133.33MHz; NOTE 6</td>
<td>90 ps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>QC 133.33MHz; NOTE 7</td>
<td>90 ps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>QC 133.33MHz; NOTE 8</td>
<td>90 ps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>QC 100MHz; NOTE 7</td>
<td>95 ps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>QC 125MHz; NOTE 8</td>
<td>95 ps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>QC 125MHz; NOTE 9</td>
<td>95 ps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>QC 125MHz; NOTE 10</td>
<td>95 ps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>QDx 125MHz; NOTE 6</td>
<td>90 ps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>QDx 125MHz; NOTE 7</td>
<td>90 ps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>QDx 125MHz; NOTE 8</td>
<td>90 ps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>QDx 125MHz; NOTE 9</td>
<td>90 ps</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>QDx 125MHz; NOTE 10</td>
<td>90 ps</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>tjitter(hper)</td>
<td>RMS Half-Period Jitter; NOTE 2, 4</td>
<td>QA, nQA 133.33MHz; NOTE 6</td>
<td>30</td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100MHz; NOTE 7</td>
<td>30</td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>133.33MHz; NOTE 8</td>
<td>30</td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100MHz; NOTE 9</td>
<td>30</td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>83.33MHz; NOTE 10</td>
<td>30</td>
<td></td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>tR/tF</td>
<td>Output Rise/Fall Time</td>
<td>QA, nQA QBx, QC, QDx, QE, QREFx</td>
<td>150</td>
<td>350</td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10% to 90% 200</td>
<td></td>
<td>900</td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>odc</td>
<td>Output Duty Cycle</td>
<td>QA, nQA QBx, QC, QE, QREFx</td>
<td>48</td>
<td>52</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>QDx</td>
<td>48</td>
<td>52</td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>tLOCK</td>
<td>Lock Time</td>
<td></td>
<td></td>
<td>55</td>
<td></td>
<td>ms</td>
</tr>
</tbody>
</table>

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE: All parameters measured at maximum fOUT, unless noted otherwise.
NOTE: All parameters are characterized using crystal input, unless noted otherwise.
NOTE: VDDO_X denotes VDDO_B, VDDO_CD, VDDO_E and VDDO_REF.
NOTE 1: Defined as skew within a bank of outputs at the same supply voltage and with equal load conditions.
NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.
NOTE 3: Defined as skew between outputs on different devices operating at the same supply voltage, same temperature, same frequency and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at VDDO_REF/2.
NOTE 4: This parameter is measured at the crosspoint for differential and VDDO_X/2 single-ended signals.
NOTE 5: Refer to the phase noise plot.
NOTE 6: DDR_SEL[1:0] = 00: QA, nQA = 133.33MHz, QBx = 50MHz, QC = 133.33MHz, QDx = OFF, QE = 125MHz and QREFx = 25MHz.
NOTE 7: DDR_SEL[1:0] = 01: QA, nQA = 100MHz, QBx = 50MHz, QC = OFF, QDx = 100MHz, QE = OFF and QREFx = 25MHz.
NOTE 8: DDR_SEL[1:0] = 00: QA, nQA = 133.33MHz, QBx = 50MHz, QC = OFF, QDx = 125MHz, QE = 125MHz and QREFx = 25MHz.
NOTE 9: DDR_SEL[1:0] = 01: QA, nQA = 100MHz, QBx = 50MHz, QC = 133.33MHz, QDx = OFF, QE = 125MHz and QREFx = 25MHz.
NOTE 10: DDR_SEL[1:0] = 10: QA, nQA = 83.33MHz, QBx = 50MHz, QC = OFF, QDx = 125MHz, QE = 125MHz and QREFx = 25MHz.
NOTE 11: This parameter is measured at 10K cycles.
Typical Phase Noise at 125MHz (QE output)
Typical Phase Noise at 25MHz (QREF output)
Parameter Measurement Information

3.3V Core/3.3V LVCMOS Output Load AC Test Circuit

3.3V Core/2.5V LVCMOS Output Load AC Test Circuit

3.3V Core/3.3V LVPECL Output Load AC Test Circuit

3.3V Core/3.3V LVDS Output Load AC Test Circuit

Differential Input Level

LVCMOS Part-to-Part Skew
Parameter Measurement Information, continued

Period Jitter, Peak-to-Peak

Half Period Jitter

Differential Output Duty Cycle/Pulse Width/Period

LVCMOS Output Duty Cycle/Pulse Width/Period

RMS Phase Jitter

LVCMOS Bank Skew

Mean Period (First edge after trigger) 10,000 cycles
Parameter Measurement Information, continued

LVDS Output Rise/Fall Time

LVCMOS Output Rise/Fall Time

Lock Time

Offset Voltage Setup

Differential Output Voltage Setup
Applications Information

Recommendations for Unused Input and Output Pins

Inputs:

PCLK/nPCLK Inputs
For applications not requiring the use of the differential input, both PCLK and nPCLK can be left floating. Though not required, but for additional protection, a 1kΩ resistor can be tied from PCLK to ground.

Crystal Inputs
For applications not requiring the use of the crystal oscillator input, both XTAL_IN and XTAL_OUT can be left floating. Though not required, but for additional protection, a 1kΩ resistor can be tied from XTAL_IN to ground.

LVCMOS Control Pins
All control pins have internal pulldowns; additional resistance is not required but can be added for additional protection. A 1kΩ resistor can be used.

Outputs:

LVPECL Outputs
The unused LVPECL output pair can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.

LVDS Outputs
The unused LVDS output pair can be either left floating or terminated with 100Ω across. If they are left floating, there should be no trace attached.

LVCMOS Outputs
All unused LVCMOS output can be left floating. There should be no trace attached.

Wiring the Differential Input to Accept Single-Ended Levels

Figure 1 shows how a differential input can be wired to accept single ended levels. The reference voltage \(V_{REF} = \frac{V_{DD}}{2} \) is generated by the bias resistors R1 and R2. The bypass capacitor (C1) is used to help filter noise on the DC bias. This bias circuit should be located as close to the input pin as possible. The ratio of R1 and R2 might need to be adjusted to position the \(V_{REF} \) in the center of the input voltage swing. For example, if the input clock swing is 2.5V and \(V_{DD} = 3.3\text{V} \), R1 and R2 value should be adjusted to set \(V_{REF} \) at 1.25V. The values below are for when both the single ended swing and \(V_{DD} \) are at the same voltage. This configuration requires that the sum of the output impedance of the driver (Ro) and the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the input will attenuate the signal in half. This can be done in one of two ways. First, R3 and R4 in parallel should equal the transmission line impedance. For most 50Ω applications, R3 and R4 can be 100Ω. The values of the resistors can be increased to reduce the loading for slower and weaker LVCMOS driver. When using single-ended signaling, the noise rejection benefits of differential signaling are reduced. Even though the differential input can handle full rail LVCMOS signaling, it is recommended that the amplitude be reduced. The datasheet specifies a lower differential amplitude, however this only applies to differential signals. For single-ended applications, the swing can be larger, however \(V_{IL} \) cannot be less than -0.3V and \(V_{IH} \) cannot be more than \(V_{DD} + 0.3\text{V} \). Though some of the recommended components might not be used, the pads should be placed in the layout. They can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a differential signal.

Figure 1. Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels
3.3V LVPECL Differential Clock Input Interface

The PCLK /nPCLK accepts LVPECL, LVDS, CML1

and other differential signals. The differential signals must meet the

V_{PP} and V_{CMR} input requirements. Figures 2A to 2D show interface

examples for the PCLK/ nPCLK input driven by the most common

driver types. The input interfaces suggested here are examples only.

If the driver is from another vendor, use their termination

recommendation. Please consult with the vendor of the driver

component to confirm the driver termination requirements.

Figure 2A. PCLK/nPCLK Input Driven by a

3.3V LVPECL Driver with AC Couple

Figure 2B. PCLK/nPCLK Input Driven by a

3.3V LVPECL Driver

Figure 2C. PCLK/nPCLK Input Driven by a

3.3V LVDS Driver

Figure 2D. PCLK/nPCLK Input Driven by a CML Driver
Overdriving the XTAL Interface

The XTAL_IN input can accept a single-ended LVCMOS signal through an AC coupling capacitor. A general interface diagram is shown in Figure 3A. The XTAL_OUT pin can be left floating. The maximum amplitude of the input signal should not exceed 2V and the input edge rate can be as slow as 10ns. This configuration requires that the output impedance of the driver (Ro) plus the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most 50Ω applications, R1 and R2 can be 100Ω. This can also be accomplished by removing R1 and making R2 50Ω. By overdriving the crystal oscillator, the device will be functional, but note, the device performance is guaranteed by using a quartz crystal.

Figure 3A. General Diagram for LVCMOS Driver to XTAL Input Interface

Figure 3B. General Diagram for LVPECL Driver to XTAL Input Interface
Termination for 3.3V LVPECL Outputs

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

The differential output pair is low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. Figures 4A and 4B show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

![Figure 4A. 3.3V LVPECL Output Termination](image)

![Figure 4B. 3.3V LVPECL Output Termination](image)

LVDS Driver Termination

A general LVDS interface is shown in Figure 5. Standard termination for LVDS type output structure requires both a 100Ω parallel resistor at the receiver and a 100Ω differential transmission line environment. In order to avoid any transmission line reflection issues, the 100Ω resistor must be placed as close to the receiver as possible. IDT offers a full line of LVDS compliant devices with two types of output structures: current source and voltage source. The standard termination schematic as shown in Figure 5 can be used with either type of output structure. If using a non-standard termination, it is recommended to contact IDT and confirm if the output is a current source or a voltage source type structure. In addition, since these outputs are LVDS compatible, the amplitude and common mode input range of the input receivers should be verified for compatibility with the output.

![Figure 5. Typical LVDS Driver Termination](image)
EPAD Thermal Release Path

In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in Figure 6. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts.

While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as “heat pipes”. The number of vias (i.e. “heat pipes”) are application specific and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a guideline only. For further information, please refer to the Application Note on the Surface Mount Assembly of Amkor’s Thermally/ Electrically Enhance Leadframe Base Package, Amkor Technology.

Figure 6. P.C. Assembly for Exposed Pad Thermal Release Path – Side View (drawing not to scale)
As with any high speed analog circuitry, the power supply pins are vulnerable to noise. To achieve optimum jitter performance, power supply isolation is required. The ICS8430S803I provides separate power supplies to isolate from coupling into the internal PLL.

In order to achieve the best possible filtering, it is recommended that the placement of the filter components be on the device side of the PCB as close to the power pins as possible. If space is limited, the 0.1uF capacitor in each power pin filter should be placed on the device side of the PCB and the other components can be placed on the opposite side.

Figure 7. ICS8430S803I Schematic Example

Power supply filter recommendations are a general guideline to be used for reducing external noise from coupling into the devices. The filter performance is designed for wide range of noise frequencies. This low-pass filter starts to attenuate noise at approximately 10kHz. If a specific frequency noise component is known, such as switching power supply frequencies, it is recommended that component values be adjusted and if required, additional filtering be added. Additionally, good general design practices for power plane voltage stability suggests adding bulk capacitances in the local area of all devices.

The schematic example focuses on functional connections and is not configuration specific. Refer to the pin description and functional tables in the datasheet to ensure the logic control inputs are properly set.
Power Considerations (LVCMOS/LVDS Outputs)

This section provides information on power dissipation and junction temperature for the ICS8430S803I. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the ICS8430S803I is the sum of the core power plus the power dissipated in the load(s). The following is the power dissipation for $V_{DD} = 3.3V + 5\% = 3.465V$, which gives worst case results.

Core and LVDS Output Power Dissipation
- Power (core, LVDS) = $V_{DD_{MAX}} \times (I_{DD} + I_{DDA}) = 3.465V \times (150mA + 20mA) = 589.05mW$

LVCMOS Output Power Dissipation
- Dynamic Power Dissipation at 133.33MHz

 Power (133.33MHz) = $C_{PD} \times \text{Frequency} \times (V_{DDO})^2$ = $10pF \times 133.33MHz \times (3.465V)^2$ = 16mW per output

 Total Power (133.33MHz) = 16mW * 1 = 16mW

- Power(125MHz) = 10pF * 125MHz * (3.465V)^2 = 15mW per output
 Total Power (125MHz) = 15mW * 3 = 45mW

- Dynamic Power Dissipation at 25MHz

 Power (25MHz) = $C_{PD} \times \text{Frequency} \times (V_{DDO})^2$ = $10pF \times 25MHz \times (3.465V)^2$ = 3mW per output

 Total Power (25MHz) = 3mW * 3 = 9mW

 Power (50MHz) = $C_{PD} \times \text{Frequency} \times (V_{DDO})^2$ = $10pF \times 50MHz \times (3.465V)^2$ = 6mW per output

 Total Power (50MHz) = 6mW * 2 = 12mW

Total Power Dissipation
- Total Power

 $= \text{Power (core, LVDS)} + \text{Total Power (133.33MHz)} + \text{Total Power (125MHz)} + \text{Total Power (25MHz)} + \text{Total Power (50MHz)}$

 $= 589.05mW + 16mW + 45mW + 9mW + 12mW$

 $= 671.05mW$
2. Junction Temperature.

Junction temperature, T_{j}, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, T_{j}, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for T_{j} is as follows:
$$ T_{j} = \theta_{JA} \times P_{d_total} + T_{A} $$

- T_{j} = Junction Temperature
- θ_{JA} = Junction-to-Ambient Thermal Resistance
- P_{d_total} = Total Device Power Dissipation (example calculation is in section 1 above)
- T_{A} = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 33.1°C/W per Table 7A below.

Therefore, T_{j} for an ambient temperature of 85°C with all outputs switching is:

$$ 85°C + 0.671 \times 33.1°C/W = 107.2°C. $$

This is below the limit of 125°C.

This calculation is only an example. T_{j} will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board.

Table 7A. Thermal Resistance θ_{JA} for 48 Lead TQFP, EPAD Forced Convection

<table>
<thead>
<tr>
<th>Meters per Second</th>
<th>θ_{JA} Vs. Air Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Multi-Layer PCB, JEDEC Standard Test Boards</td>
<td>33.1°C/W</td>
</tr>
</tbody>
</table>
Power Considerations (LVCMOS/LVPECL Outputs)

This section provides information on power dissipation and junction temperature for the ICS8430S803I. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the ICS8430S803I is the sum of the core power plus the analog power plus the power dissipated in the load(s). The following is the power dissipation for VDD = 3.3V + 5% = 3.465V, which gives worst case results.

Core and LVPECL Output Power Dissipation

- Power (core)_{MAX} = VDD_{MAX} * IEE_{MAX} = 3.465V * 186mA = 644.49mW
- Power (output)_{MAX} = 30mW/Loaded Output Pair

LVCMOS Output Power Dissipation

- Dynamic Power Dissipation at 133.33MHz
 \[\text{Power (133.33MHz)} = C_{PD} * \text{Frequency} * (V_{DDO})^2 = 10pF * 133.33MHz * (3.465V)^2 = 16\text{mW per output} \]
 \[\text{Total Power (133.33MHz)} = 16\text{mW} * 1 = 16\text{mW} \]

- Power(125MHz) = 10pF * 125MHz * (3.465V)^2 = 15\text{mW per output}
 \[\text{Total Power (125MHz)} = 15\text{mW} * 3 = 45\text{mW} \]

- Dynamic Power Dissipation at 25MHz
 \[\text{Power (25MHz)} = C_{PD} * \text{Frequency} * (V_{DDO})^2 = 10pF * 25MHz * (3.465V)^2 = 3\text{mW per output} \]
 \[\text{Total Power (25MHz)} = 3\text{mW} * 3 = 9\text{mW} \]

- Power (50MHz) = 10pF * 50MHz * (3.465V)^2 = 6\text{mW per output}
 \[\text{Total Power (50MHz)} = 6\text{mW} * 2 = 12\text{mW} \]

Total Power Dissipation

- Total Power
 \[\text{= Power (core, LVPECL) + Total Power (133.33MHz) + Total Power (125MHz) + Total Power (25MHz) + Total Power (50MHz)} \]
 \[\text{= 644.49mW + 16mW + 45mW + 9mW + 12mW} \]
 \[\text{= 726.49mW} \]
2. Junction Temperature.

Junction temperature, T_j, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, T_j, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for T_j is as follows: $T_j = \theta_{JA} \times P_{d_total} + T_A$

- T_j = Junction Temperature
- θ_{JA} = Junction-to-Ambient Thermal Resistance
- P_{d_total} = Total Device Power Dissipation (example calculation is in section 1 above)
- T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 33.1°C/W per Table 7B below.

Therefore, T_j for an ambient temperature of 85°C with all outputs switching is:

$$85°C + 0.727W \times 33.1°C/W = 109.1°C.$$ This is below the limit of 125°C.

This calculation is only an example. T_j will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board.

Table 7B. Thermal Resistance θ_{JA} for 48 Lead TQFP, EPAD Forced Convection

<table>
<thead>
<tr>
<th>Meters per Second</th>
<th>θ_{JA} Vs. Air Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Layer PCB, JEDEC Standard Test Boards</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>33.1°C/W</td>
</tr>
</tbody>
</table>
3. Calculations and Equations.
The purpose of this section is to calculate the power dissipation for the LVPECL output pairs.
The LVPECL output driver circuit and termination are shown in Figure 8.

![Figure 8. LVPECL Driver Circuit and Termination](image)

To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of VDD – 2V.

- For logic high, \(V_{OUT} = V_{OH_MAX} = V_{DD_MAX} - 0.9V \)
 \(V_{DD_MAX} - V_{OH_MAX} = 0.9V \)
- For logic low, \(V_{OUT} = V_{OL_MAX} = V_{DD_MAX} - 1.7V \)
 \(V_{DD_MAX} - V_{OL_MAX} = 1.7V \)

\[
P_d_H = \left(\frac{2V - (VDD_MAX - 0.9V)}{50\Omega}\right) \times 0.9V = 19.8\text{mW}
\]

\[
P_d_L = \left(\frac{2V - (VDD_MAX - 1.7V)}{50\Omega}\right) \times 1.7V = 10.2\text{mW}
\]

Pd_H is power dissipation when the output drives high.
Pd_L is the power dissipation when the output drives low.

Total Power Dissipation per output pair = \(P_d_H + P_d_L = 30\text{mW} \)
Reliability Information

Table 8. θ_{JA} vs. Air Flow Table for a 48 Lead TQFP, EPAD

<table>
<thead>
<tr>
<th>Meters per Second</th>
<th>0</th>
<th>1</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Layer PCB, JEDEC Standard Test Boards</td>
<td>33.1°C/W</td>
<td>27.2°C/W</td>
<td>25.7°C/W</td>
</tr>
</tbody>
</table>

Transistor Count

The transistor count for ICS8430S803I is 9,291
Table 9. Package Dimensions 48L TQFP, EPAD

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Minimum</th>
<th>Nominal</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>0.05</td>
<td>0.10</td>
<td>0.15</td>
</tr>
<tr>
<td>A2</td>
<td>0.95</td>
<td>1.00</td>
<td>1.05</td>
</tr>
<tr>
<td>b</td>
<td>0.17</td>
<td>0.22</td>
<td>0.27</td>
</tr>
<tr>
<td>c</td>
<td>0.09</td>
<td></td>
<td>0.20</td>
</tr>
<tr>
<td>D & E</td>
<td>9.00 Basic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1 & E1</td>
<td>7.00 Basic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2 & E2</td>
<td>5.50 Ref.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3 & E3</td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>0.5 Basic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>0.45</td>
<td>0.60</td>
<td>0.75</td>
</tr>
<tr>
<td>θ</td>
<td>0°</td>
<td></td>
<td>7°</td>
</tr>
<tr>
<td>ccc</td>
<td>0.08</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reference Document: JEDEC Publication 95, MS-026
Ordering Information

Table 10. Ordering Information

<table>
<thead>
<tr>
<th>Part/Order Number</th>
<th>Marking</th>
<th>Package</th>
<th>Shipping Packaging</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>8430S803BYILF</td>
<td>ICS30S803BIL</td>
<td>“Lead-Free” 48 TQFP, EPAD</td>
<td>Tray</td>
<td>-40°C to 85°C</td>
</tr>
<tr>
<td>8430S803BYILFT</td>
<td>ICS30S803BiL</td>
<td>“Lead-Free” 48 TQFP, EPAD</td>
<td>1000 Tape & Reel</td>
<td>-40°C to 85°C</td>
</tr>
</tbody>
</table>

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades. "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 Standard: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 High Quality: Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Corporate Headquarters
TOYOUS FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2019 Renesas Electronics Corporation. All rights reserved.