General Description

The ICS85314I-11 is a low skew, high performance 1-to-5 Differential-to-2.5V, 3.3V LVPECL fanout buffer. The ICS85314I-11 has two selectable differential clock inputs. The CLK0, nCLK0 and CLK1, nCLK1 pairs can accept most standard differential input levels. The clock enable is internally synchronized to eliminate runt clock pulses on the outputs during asynchronous assertion/deassertion of the clock enable pin.

Guaranteed output and part-to-part skew characteristics make the ICS85314I-11 ideal for those applications demanding well defined performance and repeatability.

Features

- Five differential 2.5V/3.3V LVPECL outputs
- Selectable differential CLKx, nCLKx inputs
- CLK0, nCLK0 and CLK1, nCLK1 pairs can accept the following differential input levels: LVPECL, LVDS, LVHSTL, HCSL, SSTL
- Maximum output frequency: 700MHz
- Translates any single-ended input signal to 3.3V LVPECL levels with resistor bias on nCLK input
- Output skew: 30ps (maximum)
- Propagation delay: 1.8ns (maximum)
- LVPECL mode operating voltage supply range: \(V_{CC} = 2.375V \) to 3.8V, \(V_{EE} = 0V \)
- -40°C to 85°C ambient operating temperature
- Lead-free (RoHS 6) packaging

Block Diagram

Pin Assignment

ICS85314I-11
20-Lead TSSOP
6.5mm x 4.4mm x 0.92mm package body
G Package
Top View

ICS85314I-11
20-Lead SOIC
7.5mm x 12.8mm x 2.3mm package body
M Package
Top View
Table 1. Pin Descriptions

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2</td>
<td>Q0, nQ0</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
<tr>
<td>3, 4</td>
<td>Q1, nQ1</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
<tr>
<td>5, 6</td>
<td>Q2, nQ2</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
<tr>
<td>7, 8</td>
<td>Q3, nQ3</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
<tr>
<td>9, 10</td>
<td>Q4, nQ4</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
<tr>
<td>11</td>
<td>VEE</td>
<td>Power</td>
<td>Negative supply pin.</td>
</tr>
<tr>
<td>12</td>
<td>CLK_SEL</td>
<td>Input</td>
<td>Pulldown Clock select input. When HIGH, selects CLK1, nCLK1 inputs. When LOW, selects CLK0, nCLK0 inputs. LVTTL / LVCMOS interface levels.</td>
</tr>
<tr>
<td>13</td>
<td>CLK0</td>
<td>Input</td>
<td>Pulldown Non-inverting differential clock input.</td>
</tr>
<tr>
<td>14</td>
<td>nCLK0</td>
<td>Input</td>
<td>Pullup Inverting differential clock input.</td>
</tr>
<tr>
<td>15</td>
<td>RESERVED</td>
<td>Reserve</td>
<td>Reserved pin.</td>
</tr>
<tr>
<td>16</td>
<td>CLK1</td>
<td>Input</td>
<td>Pulldown Non-inverting differential clock input.</td>
</tr>
<tr>
<td>17</td>
<td>nCLK1</td>
<td>Input</td>
<td>Pullup Inverting differential clock input.</td>
</tr>
<tr>
<td>18, 20</td>
<td>VCC</td>
<td>Power</td>
<td>Positive supply pins.</td>
</tr>
<tr>
<td>19</td>
<td>nCLK_EN</td>
<td>Input</td>
<td>Pulldown Synchronizing clock enable. When LOW, clock outputs follow clock input. When HIGH, Q outputs are forced low, nQ outputs are forced high. LVTTL / LVCMOS interface levels.</td>
</tr>
</tbody>
</table>

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIN</td>
<td>Input Capacitance</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>R_PULLUP</td>
<td>Input Pullup Resistor</td>
<td></td>
<td>51</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>R_PULLDOWN</td>
<td>Input Pulldown Resistor</td>
<td></td>
<td>51</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
</tbody>
</table>
Function Tables

Table 3A. Control Input Function Table

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
<th>Selected Source</th>
<th>Q[0:4]</th>
<th>nQ[0:4]</th>
</tr>
</thead>
<tbody>
<tr>
<td>nCLK_EN</td>
<td>CLK_SEL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>CLK0, nCLK0</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>CLK1, nCLK1</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>CLK0, nCLK0</td>
<td>Disabled; LOW</td>
<td>Disabled; HIGH</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>CLK1, nCLK1</td>
<td>Disabled; LOW</td>
<td>Disabled; HIGH</td>
</tr>
</tbody>
</table>

After nCLK_EN switches, the clock outputs are disabled or enabled following a falling input clock edge as shown in Figure 1. In the active mode, the state of the outputs are a function of the CLK0, nCLK0 and CLK1, nCLK1 inputs as described in Table 3B.

Figure 1. nCLK_EN Timing Diagram

Table 3B. Clock Input Function Table

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
<th>Input to Output Mode</th>
<th>Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLK0 or CLK1</td>
<td>nCLK0 or nCLK1</td>
<td>Q[0:4]</td>
<td>nQ[0:4]</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>LOW</td>
<td>HIGH</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>HIGH</td>
<td>LOW</td>
</tr>
</tbody>
</table>
Absolute Maximum Ratings

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

<table>
<thead>
<tr>
<th>Item</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage, V_{CC}</td>
<td>4.6V</td>
</tr>
<tr>
<td>Inputs, V_i</td>
<td>$-0.5V$ to $V_{CC} + 0.5V$</td>
</tr>
<tr>
<td>Outputs, I_O</td>
<td></td>
</tr>
<tr>
<td>Continuous Current</td>
<td>50mA</td>
</tr>
<tr>
<td>Surge Current</td>
<td>100mA</td>
</tr>
<tr>
<td>Package Thermal Impedance, θ_{JA}</td>
<td></td>
</tr>
<tr>
<td>20 Lead SOIC</td>
<td>46.2°C/W (0 ifpm)</td>
</tr>
<tr>
<td>20 Lead TSSOP</td>
<td>73.2°C/W (0 ifpm)</td>
</tr>
<tr>
<td>Storage Temperature, T_{STG}</td>
<td>$-65°C$ to 150°C</td>
</tr>
</tbody>
</table>

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, $V_{CC} = 2.375V$ to $3.8V$; $V_{EE} = 0V$, $T_A = -40°C$ to $85°C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}</td>
<td>Positive Supply Voltage</td>
<td></td>
<td>2.375</td>
<td>3.3</td>
<td>3.8</td>
<td>V</td>
</tr>
<tr>
<td>I_{EE}</td>
<td>Power Supply Current</td>
<td></td>
<td>80</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

Table 4B. LVCMOS/LVTTL DC Characteristics, $V_{CC} = 2.375V$ to $3.8V$; $V_{EE} = 0V$, $T_A = -40°C$ to $85°C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IH}</td>
<td>Input High Voltage</td>
<td></td>
<td>2</td>
<td></td>
<td>$V_{CC} + 0.3$</td>
<td>V</td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Input Low Voltage</td>
<td></td>
<td>-0.3</td>
<td>0.8</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{IH}</td>
<td>Input High Current</td>
<td>nCLK_EN, CLK_SEL</td>
<td></td>
<td>$V_{CC} = V_{IN} = 3.8V$</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>I_{IL}</td>
<td>Input Low Current</td>
<td>nCLK_EN, CLK_SEL</td>
<td></td>
<td>$V_{CC} = 3.8V, V_{IN} = 0V$</td>
<td>-5</td>
<td>µA</td>
</tr>
</tbody>
</table>

Table 4C. Differential DC Characteristics, $V_{CC} = 2.375V$ to $3.8V$; $V_{EE} = 0V$, $T_A = -40°C$ to $85°C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{IH}</td>
<td>Input High Current</td>
<td>CLK0, CLK1</td>
<td></td>
<td>$V_{CC} = V_{IN} = 3.8V$</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nCLK0, nCLK1</td>
<td></td>
<td>$V_{CC} = V_{IN} = 3.8V$</td>
<td>5</td>
<td>µA</td>
</tr>
<tr>
<td>I_{IL}</td>
<td>Input Low Current</td>
<td>CLK0, CLK1</td>
<td></td>
<td>$V_{CC} = 3.8V, V_{IN} = 0V$</td>
<td>-5</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nCLK0, nCLK1</td>
<td></td>
<td>$V_{CC} = 3.8V, V_{IN} = 0V$</td>
<td>-150</td>
<td>µA</td>
</tr>
<tr>
<td>V_{PP}</td>
<td>Peak-to-Peak Voltage</td>
<td></td>
<td>0.15</td>
<td>1.3</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{CMR}</td>
<td>Common Mode Range</td>
<td></td>
<td>0.5</td>
<td></td>
<td>$V_{CC} - 0.85$</td>
<td>V</td>
</tr>
</tbody>
</table>

NOTE 1: V_{IL} should not be less than $-0.3V$
NOTE 2: Common mode voltage is defined as V_{IH}.

Note: Some symbols have a symbol before the parameter, e.g. V_{IH}.
Table 4D. LVPECL DC Characteristics, $V_{CC} = 2.375V$ to $3.8V; V_{EE} = 0V, T_A = -40^\circ C$ to $85^\circ C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OH}</td>
<td>Output High Voltage; NOTE 1</td>
<td>$V_{CC} - 1.4$</td>
<td>$V_{CC} - 0.9$</td>
<td>$V_{CC} - 1.7$</td>
<td>$V_{CC} - 2V$</td>
<td></td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Output Low Voltage; NOTE 1</td>
<td>$V_{CC} - 2.0$</td>
<td>$V_{CC} - 1.7$</td>
<td>$V_{CC} - 2V$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{SWING}</td>
<td>Peak-to-Peak Output Voltage Swing</td>
<td>0.6</td>
<td>1.0</td>
<td>$V_{CC} - 2V$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1: Outputs termination with 50Ω to $V_{CC} - 2V$.

AC Electrical Characteristics

Table 5. AC Characteristics, $V_{CC} = 2.375V$ to $3.8V; V_{EE} = 0V, T_A = -40^\circ C$ to $85^\circ C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{OUT}</td>
<td>Output Frequency</td>
<td></td>
<td>700</td>
<td>MHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{PLH}</td>
<td>Propagation Delay, Low to High; NOTE 1</td>
<td>$f \leq 700MHz$</td>
<td>1.0</td>
<td>1.4</td>
<td>1.8</td>
<td>ns</td>
</tr>
<tr>
<td>$t_{sk(o)}$</td>
<td>Output Skew; NOTE 2, 3</td>
<td></td>
<td>30</td>
<td>ps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{jit}</td>
<td>Buffer Additive Phase Jitter, RMS</td>
<td>156.25MHz, Integration Range: 12kHz - 20MHz</td>
<td>0.170</td>
<td>0.200</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>644.53125MHz, Integration Range: 12kHz - 20MHz</td>
<td>0.060</td>
<td>0.200</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td>$t_{sk(pp)}$</td>
<td>Part-to-Part Skew; NOTE 3, 4</td>
<td></td>
<td>350</td>
<td>ps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{S}</td>
<td>Setup Time</td>
<td>nCLK_EN to CLK</td>
<td>50</td>
<td>ps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{H}</td>
<td>Hold Time</td>
<td>nCLK_EN to CLK</td>
<td>50</td>
<td>ps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{R} / t_{F}</td>
<td>Output Rise/Fall Time</td>
<td>20% to 80%</td>
<td>200</td>
<td>700</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td>ocd</td>
<td>Output Duty Cycle Skew</td>
<td>$f \leq 700MHz$</td>
<td>45</td>
<td>55</td>
<td>%</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: All parameters measured at f_{OUT} unless otherwise noted.
NOTE: The cycle-to-cycle jitter on the input will equal the jitter on the output. The part does not add jitter.
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lpfm. The device will meet specifications after thermal equilibrium has been reached under these conditions.
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions.
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.
NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltage, same temperature, same frequency and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.
156.25MHz Additive Phase Jitter

The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the **dBc Phase Noise**. This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm) or a ratio of the power in the 1Hz band to the power in the fundamental. When the required offset is specified, the phase noise is called a **dBc** value, which simply means dBm at a specified offset from the fundamental.

By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot.

As with most timing specifications, phase noise measurements have issues relating to the limitations of the measurement equipment. The noise floor of the equipment can be higher or lower than the noise floor of the device. Additive phase noise is dependent on both the noise floor of the input source and measurement equipment.

Measured using a Rohde & Schwarz SMA100 as the input source.

![Phase Noise Chart](image-url)
644.53125MHz Additive Phase Jitter

The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the **dBc Phase Noise**. This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm) or a ratio of the power in the 1Hz band to the power in the fundamental. When the required offset is specified, the phase noise is called a **dBc** value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot.

As with most timing specifications, phase noise measurements have issues relating to the limitations of the measurement equipment. The noise floor of the equipment can be higher or lower than the noise floor of the device. Additive phase noise is dependent on both the noise floor of the input source and measurement equipment.

Measured using a Rohde & Schwarz SMA100 as the input source.
Parameter Measurement Information

LVPECL Output Load Test Circuit

Differential Input Level

Output Skew

Part-to-Part Skew

Propagation Delay

RMS Phase Jitter
Parameter Measurement Information, continued

Setup & Hold Time

Output Rise/Fall Time

Output Duty Cycle
Application Information

Wiring the Differential Input to Accept Single-Ended Levels

Figure 2 shows how a differential input can be wired to accept single ended levels. The reference voltage \(V_1 = \frac{V_{CC}}{2} \) is generated by the bias resistors R1 and R2. The bypass capacitor (C1) is used to help filter noise on the DC bias. This bias circuit should be located as close to the input pin as possible. The ratio of R1 and R2 might need to be adjusted to position the \(V_1 \) in the center of the input voltage swing. For example, if the input clock swing is 2.5V and \(V_{CC} = 3.3V \), R1 and R2 value should be adjusted to set \(V_1 \) at 1.25V. The values below are for when both the single ended swing and \(V_{CC} \) are at the same voltage. This configuration requires that the sum of the output impedance of the driver (Ro) and the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the input will attenuate the signal in half. This can be done in one of two ways. First, R3 and R4 in parallel should equal the transmission line impedance. For most 50Ω applications, R3 and R4 can be 100Ω. The values of the resistors can be increased to reduce the loading for slower and weaker LVCMOS driver. When using single-ended signaling, the noise rejection benefits of differential signaling are reduced. Even though the differential input can handle full rail LVCMOS signaling, it is recommended that the amplitude be reduced. The datasheet specifies a lower differential amplitude, however this only applies to differential signals. For single-ended applications, the swing can be larger, however \(V_{IL} \) cannot be less than -0.3V and \(V_{IH} \) cannot be more than \(V_{CC} + 0.3V \). Though some of the recommended components might not be used, the pads should be placed in the layout. They can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a differential signal.

![Figure 2. Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels](image)

Recommendations for Unused Input and Output Pins

Inputs:

- **CLK/nCLK Inputs**
 For applications not requiring the use of the differential input, both CLK and nCLK can be left floating. Though not required, but for additional protection, a 1kΩ resistor can be tied from CLK to ground.

Outputs:

- **LVPECL Outputs**
 All unused LVPECL outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.

Control Pins

All control pins have internal pulldown resistors; additional resistance is not required but can be added for additional protection. A 1kΩ resistor can be used.
3.3V Differential Clock Input Interface

The CLK / nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both V_{SWING} and V_{OH} must meet the V_{PP} and V_{CMR} input requirements. Figures 3A to 3F show interface examples for the CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are examples only. Please consult with the vendor of the driver component to confirm the driver termination requirements. For example in Figure 3A, the input termination applies for IDT LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation.

Figure 3A. CLK/nCLK Input Driven by an IDT LVHSTL Driver

Figure 3B. CLK/nCLK Input Driven by a 3.3V LVPECL Driver

Figure 3C. CLK/nCLK Input Driven by a 3.3V LVPECL Driver

Figure 3D. CLK/nCLK Input Driven by a 3.3V LVDS Driver

Figure 3E. CLK/nCLK Input Driven by a 3.3V HCSL Driver

Figure 3F. CLK/nCLK Input Driven by a 2.5V SSTL Driver
2.5V Differential Clock Input Interface

The CLK/nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both V_{SWING} and V_{OH} must meet the V_{PP} and V_{CMR} input requirements. Figures 3A to 3F show interface examples for the CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are examples only. Please consult with the vendor of the driver component to confirm the driver termination requirements. For example in Figure 3A, the input termination applies for IDT LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation.

![Figure 3A](image1.png) CLk/nCLK Input Driven by an IDT LVHSTL Driver

![Figure 3B](image2.png) CLk/nCLK Input Driven by a 2.5V LVPECL Driver

![Figure 3C](image3.png) CLk/nCLK Input Driven by a 2.5V LVPECL Driver

![Figure 3D](image4.png) CLk/nCLK Input Driven by a 2.5V LVDS Driver

![Figure 3E](image5.png) CLk/nCLK Input Driven by a 2.5V HCSL Driver

![Figure 3F](image6.png) CLk/nCLK Input Driven by a 2.5V SSTL Driver
Termination for 3.3V LVPECL Outputs

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

The differential outputs are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. Figures 5A and 5B show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

Figure 5A. 3.3V LVPECL Output Termination

Figure 5B. 3.3V LVPECL Output Termination
Termination for 2.5V LVPECL Outputs

Figure 6A and *Figure 6B* show examples of termination for 2.5V LVPECL driver. These terminations are equivalent to terminating 50Ω to $V_{CC} - 2V$. For $V_{CC} = 2.5V$, the $V_{CC} - 2V$ is very close to ground level. The R3 in *Figure 6B* can be eliminated and the termination is shown in *Figure 6C*.

Figure 6A. 2.5V LVPECL Driver Termination Example

Figure 6B. 2.5V LVPECL Driver Termination Example

Figure 6C. 2.5V LVPECL Driver Termination Example
Power Considerations
This section provides information on power dissipation and junction temperature for the ICS85314I-11. Equations and example calculations are also provided.

1. Power Dissipation.
The total power dissipation for the ICS85314I-11 is the sum of the core power plus the power dissipated due to loading. The following is the power dissipation for \(V_{CC} = 3.8 \text{V} \), which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated due to loading.

- Power (core)\(_{\text{MAX}}\) = \(V_{CC,\text{MAX}} \times I_{EE,\text{MAX}} = 3.8 \text{V} \times 80 \text{mA} = 304 \text{mW} \)
- Power (outputs)\(_{\text{MAX}}\) = \(30 \text{mW/Loaded Output pair} \)
 - If all outputs are loaded, the total power is \(5 \times 30 \text{mW} = 150 \text{mW} \)

Total Power\(_{\text{MAX}}\) (3.6V, with all outputs switching) = \(304 \text{mW} + 150 \text{mW} = 454 \text{mW} \)

2. Junction Temperature.
Junction temperature, \(T_j \), is the temperature at the junction of the bond wire and bond pad and it directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, \(T_j \), to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for \(T_j \) is as follows: \(T_j = \theta_{JA} \times P_{d,\text{total}} + T_A \)

\(\theta_{JA} \) = Junction-to-Ambient Thermal Resistance
\(P_{d,\text{total}} \) = Total Device Power Dissipation (example calculation is in section 1 above)
\(T_A \) = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance \(\theta_{JA} \) must be used. Assuming a moderate air flow or 200 linear feet per minute and a multi-layer board, the appropriate value is 66.6°C/W per Table 6B below.

Therefore, \(T_j \) for an ambient temperature of 85°C with all outputs switching is:

\[85°C + 0.454 W \times 66.6°C/W = 115°C \]

This calculation is only an example. \(T_j \) will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 6A. Thermal Resistance \(\theta_{JA} \) for 20 Lead SOIC, Forced Convection

<table>
<thead>
<tr>
<th>Linear Feet per Minute</th>
<th>(\theta_{JA}) by Velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Single-Layer PCB, JEDEC Standard Test Boards</td>
<td>83.2°C/W</td>
</tr>
<tr>
<td>Multi-Layer PCB, JEDEC Standard Test Boards</td>
<td>46.2°C/W</td>
</tr>
</tbody>
</table>

NOTE: Most modern PCB design use multi-layered boards. The data in the second row pertains to most designs.

Table 6B. Thermal Resistance \(\theta_{JA} \) for 20 Lead TSSOP, Forced Convection

<table>
<thead>
<tr>
<th>Linear Feet per Minute</th>
<th>(\theta_{JA}) by Velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Single-Layer PCB, JEDEC Standard Test Boards</td>
<td>114.5°C/W</td>
</tr>
<tr>
<td>Multi-Layer PCB, JEDEC Standard Test Boards</td>
<td>73.2°C/W</td>
</tr>
</tbody>
</table>

NOTE: Most modern PCB design use multi-layered boards. The data in the second row pertains to most designs.
3. Calculations and Equations.
The purpose of this section is to calculate the power dissipation for the LVPECL output pairs.
LVPECL output driver circuit and termination are shown in Figure 7.

![Figure 7. LVPECL Driver Circuit and Termination](image)

To calculate power dissipation due to loading, use the following equations which assume a 50Ω load, and a termination voltage of $V_{CC} - 2V$.

- For logic high, $V_{OUT} = V_{OH, MAX} = V_{CC, MAX} - 0.9V$
 \[(V_{CC, MAX} - V_{OH, MAX}) = 0.9V \]
- For logic low, $V_{OUT} = V_{OL, MAX} = V_{CC, MAX} - 1.7V$
 \[(V_{CC, MAX} - V_{OL, MAX}) = 1.7V \]

P_{d_H} is power dissipation when the output drives high.
P_{d_L} is the power dissipation when the output drives low.

\[
P_{d_H} = \left(\frac{V_{OH, MAX} - (V_{CC, MAX} - 2V)}{R_L}\right) * (V_{CC, MAX} - V_{OH, MAX}) = \left(\frac{2V - (V_{CC, MAX} - V_{OH, MAX})}{50\Omega}\right) * 0.9V = 19.8mW
\]

\[
P_{d_L} = \left(\frac{V_{OL, MAX} - (V_{CC, MAX} - 2V)}{R_L}\right) * (V_{CC, MAX} - V_{OL, MAX}) = \left(\frac{2V - (V_{CC, MAX} - V_{OL, MAX})}{50\Omega}\right) * 1.7V = 10.2mW
\]

Total Power Dissipation per output pair = $P_{d_H} + P_{d_L} = 30mW$
Reliability Information

Table 7A. θ_{JA} vs. Air Flow Table for a 20 Lead SOIC, Forced Convection

<table>
<thead>
<tr>
<th>Linear Feet per Minute</th>
<th>0</th>
<th>200</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Layer PCB, JEDEC Standard Test Boards</td>
<td>83.2°C/W</td>
<td>65.7°C/W</td>
<td>57.5°C/W</td>
</tr>
<tr>
<td>Multi-Layer PCB, JEDEC Standard Test Boards</td>
<td>46.2°C/W</td>
<td>39.7°C/W</td>
<td>36.8°C/W</td>
</tr>
</tbody>
</table>

NOTE: Most modern PCB design use multi-layered boards. The data in the second row pertains to most designs.

Table 7B. θ_{JA} vs. Air Flow Table for a 20 Lead TSSOP, Forced Convection

<table>
<thead>
<tr>
<th>Linear Feet per Minute</th>
<th>0</th>
<th>200</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Layer PCB, JEDEC Standard Test Boards</td>
<td>114.5°C/W</td>
<td>98.0°C/W</td>
<td>88.0°C/W</td>
</tr>
<tr>
<td>Multi-Layer PCB, JEDEC Standard Test Boards</td>
<td>73.2°C/W</td>
<td>66.6°C/W</td>
<td>63.5°C/W</td>
</tr>
</tbody>
</table>

NOTE: Most modern PCB design use multi-layered boards. The data in the second row pertains to most designs.

Transistor Count

The transistor count for ICS85314I-11 is: 674
Package Outlines and Package Dimensions

Package Outline - G Suffix for 20 Lead TSSOP

Package Outline - M Suffix for 20 Lead SOIC

Table 8A. Package Dimensions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>1.20</td>
</tr>
<tr>
<td>A1</td>
<td>0.05</td>
<td>0.15</td>
</tr>
<tr>
<td>A2</td>
<td>0.80</td>
<td>1.05</td>
</tr>
<tr>
<td>b</td>
<td>0.19</td>
<td>0.30</td>
</tr>
<tr>
<td>c</td>
<td>0.09</td>
<td>0.20</td>
</tr>
<tr>
<td>D</td>
<td>6.40</td>
<td>6.60</td>
</tr>
<tr>
<td>E</td>
<td>6.40 Basic</td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td>4.30</td>
<td>4.50</td>
</tr>
<tr>
<td>e</td>
<td>0.65 Basic</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>0.45</td>
<td>0.75</td>
</tr>
<tr>
<td>α</td>
<td>0°</td>
<td>8°</td>
</tr>
<tr>
<td>aaa</td>
<td>0.10</td>
<td></td>
</tr>
</tbody>
</table>

Reference Document: JEDEC Publication 95, MO-153

Table 8B. Package Dimensions for 20 Lead SOIC

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>2.65</td>
</tr>
<tr>
<td>A1</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>2.05</td>
<td>2.55</td>
</tr>
<tr>
<td>B</td>
<td>0.33</td>
<td>0.51</td>
</tr>
<tr>
<td>C</td>
<td>0.18</td>
<td>0.32</td>
</tr>
<tr>
<td>D</td>
<td>12.60</td>
<td>13.00</td>
</tr>
<tr>
<td>E</td>
<td>7.40</td>
<td>7.60</td>
</tr>
<tr>
<td>e</td>
<td>1.27 Basic</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>0.40</td>
<td>1.27</td>
</tr>
<tr>
<td>α</td>
<td>0°</td>
<td>7°</td>
</tr>
</tbody>
</table>

Reference Document: JEDEC Publication 95, MS-013, MS-119
Ordering Information

Table 9. Ordering Information

<table>
<thead>
<tr>
<th>Part/Order Number</th>
<th>Marking</th>
<th>Package</th>
<th>Shipping Packaging</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>85314AGI-11LF</td>
<td>ICS5314AI11L</td>
<td>“Lead-Free” 20 Lead TSSOP</td>
<td>Tube</td>
<td>-40°C to 85°C</td>
</tr>
<tr>
<td>85314AGI-11LFT</td>
<td>ICS5314AI11L</td>
<td>“Lead-Free” 20 Lead TSSOP</td>
<td>Tape & Reel</td>
<td>-40°C to 85°C</td>
</tr>
<tr>
<td>85314AMI-11LF</td>
<td>ICS85314AMI-11LF</td>
<td>“Lead-Free” 20 Lead SOIC</td>
<td>Tube</td>
<td>-40°C to 85°C</td>
</tr>
<tr>
<td>85314AMI-11LFT</td>
<td>ICS85314AMI-11LF</td>
<td>“Lead-Free” 20 Lead SOIC</td>
<td>Tape & Reel</td>
<td>-40°C to 85°C</td>
</tr>
</tbody>
</table>
Revision History Sheet

<table>
<thead>
<tr>
<th>Rev</th>
<th>Table</th>
<th>Page</th>
<th>Description of Change</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>T1</td>
<td>2</td>
<td>Pin Description Table - Pin 14 & 17, nCLKx, deleted partial description and added Pullup in the "Type" column.</td>
<td>6/11/03</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>2</td>
<td>Pin Characteristics Table - C\textsubscript{IN} changed 4pF max. to 4pF typical.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>AMR - corrected Output rating.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>Added Wiring the Differential Input to Accept Single Ended Levels section</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Added Differential Clock Input Interface section</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>T5</td>
<td>1</td>
<td>Added Phase Noise bullet in Features section.</td>
<td>8/11/04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>AC Characteristics Table - added RMS Phase Jitter.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Added Phase Jitter Plot.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Updated Termination for 3.3V LVPECL Output diagrams.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>Added Termination for 2.5V LVPECL Output section</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>T1</td>
<td>1</td>
<td>Features section - added Lead-Free bullet.</td>
<td>3/22/05</td>
</tr>
<tr>
<td></td>
<td>T9</td>
<td>16</td>
<td>Ordering Information Table - added Lead-Free part number for TSSOP package.</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>T5</td>
<td>1</td>
<td>Features section - changed Part-to-Part Skew from 250ps max. to 350ps max.</td>
<td>5/24/05</td>
</tr>
<tr>
<td>D</td>
<td>T4D</td>
<td>5</td>
<td>LVPECL DC Characteristics Table - changed V\textsubscript{OH} max from V\textsubscript{CC} - 1.0V to V\textsubscript{CC} - 0.9V.</td>
<td>9/23/05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Application Information Section - added Recommendations for Unused Input and Output Pins.</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>T4C</td>
<td>4</td>
<td>Differential DC Characteristics Table - corrected typo in I\textsubscript{IH} row, nCLKx to 5uA from 150uA.</td>
<td>4/16/10</td>
</tr>
<tr>
<td></td>
<td>T5</td>
<td>5</td>
<td>Added thermal note to AC Characteristics Table.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T9</td>
<td>17</td>
<td>Updated “Wiring the Differential Input to Accept Single-ended Levels” section.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ordering Information Table - added LF marking for SOIC package.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Converted datasheet format.</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>T9</td>
<td>17</td>
<td>Ordering Information Table - corrected package in the Package Column.</td>
<td>5/4/10</td>
</tr>
<tr>
<td>F</td>
<td>T5</td>
<td>1</td>
<td>Features Section - updated packaging bullet. Deleted RMS Phase Noise bullet</td>
<td>9/16/13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>AC Characteristics Table - removed RMS Phase Noise specification, and added Buffer Additive Phase Jitter specifications.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6-7</td>
<td>Removed RMS Phase Noise Plot, and replaced with Additive Phase Jitter plots.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>Parameter Measurement Information - corrected Phase Noise diagram.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>Updated Wiring the Differential Inputs to Accept Single-ended Levels application note.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>Added 2.5V Differential Clock Input Interface application note.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T9</td>
<td>19</td>
<td>Ordering Information Table - deleted leaded parts, deleted tape and reel count.</td>
<td></td>
</tr>
</tbody>
</table>
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 Standard: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 High Quality: Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.IDT.com/go/support

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2019 Renesas Electronics Corporation. All rights reserved.