Description

The ICS854S54I-01 is a 2:1/1:2 Multiplexer. The 2:1 Multiplexer allows one of two inputs to be selected onto one output pin and the 1:2 MUX switches one input to both outputs. This device may be useful for multiplexing multi-rate Ethernet PHYs which have 100Mbit and 1000Mbit transmit/receive pairs onto an optical SFP module which has a single transmit/receive pair. Another mode allows loop back testing and allows the output of a PHY transmit pair to be routed to the PHY input pair. For examples, please refer to the Application Information section of the data sheet.

The ICS854S54I-01 is optimized for applications requiring very high performance and has a maximum operating frequency of 2.5GHz. The device is packaged in a small, 3mm x 3mm VFQFN package, making it ideal for use on space-constrained boards.

Features

- Dual 2:1, 1:2 MUX
- Three LVDS output pairs
- Three differential clock inputs can accept: LVPECL, LVDS, CML
- Loopback test mode available
- Maximum output frequency: 2.5GHz
- Propagation delay: 600ps (maximum)
- Part-to-part skew: 300ps (maximum)
- Additive phase jitter, RMS: 0.031ps (typical)
- Full 2.5V supply mode
- -40°C to 85°C ambient operating temperature
- Available in lead-free (RoHS 6) package

Block Diagram

Pin Assignment

ICS854S54I-01
16-Lead VFQFN
3mm x 3mm x 0.925mm package body
Top View
Table 1. Pin Descriptions

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2</td>
<td>QA0, nQA0</td>
<td>Output</td>
<td>Differential output pair. LVDS interface levels.</td>
</tr>
<tr>
<td>3, 4</td>
<td>QA1, nQA1</td>
<td>Output</td>
<td>Differential output pair. LVDS interface levels.</td>
</tr>
<tr>
<td>5</td>
<td>INB</td>
<td>Input</td>
<td>Pullup/Pulldown Non-inverting differential clock input.</td>
</tr>
<tr>
<td>6</td>
<td>nINB</td>
<td>Input</td>
<td>Pullup/Pulldown Inverting differential clock input. V<sub>DD</sub>/2 default when left floating.</td>
</tr>
<tr>
<td>7</td>
<td>SELB</td>
<td>Input</td>
<td>Pulldown Select pin for QA<sub>x</sub> outputs. When HIGH, selects same inputs used for QB output. When LOW, selects INB input. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
<td>Power</td>
<td>Power supply ground.</td>
</tr>
<tr>
<td>9</td>
<td>nINA1</td>
<td>Input</td>
<td>Pullup/Pulldown Inverting differential clock input. V<sub>DD</sub>/2 default when left floating.</td>
</tr>
<tr>
<td>10</td>
<td>INA1</td>
<td>Input</td>
<td>Pulldown Non-inverting differential clock input.</td>
</tr>
<tr>
<td>11</td>
<td>nINA0</td>
<td>Input</td>
<td>Pullup/Pulldown Inverting differential clock input. V<sub>DD</sub>/2 default when left floating.</td>
</tr>
<tr>
<td>12</td>
<td>INA0</td>
<td>Input</td>
<td>Pulldown Non-inverting differential clock input.</td>
</tr>
<tr>
<td>13</td>
<td>V<sub>DD</sub></td>
<td>Power</td>
<td>Power supply pin.</td>
</tr>
<tr>
<td>14</td>
<td>SELA</td>
<td>Input</td>
<td>Pulldown Select pin for QB outputs. When HIGH, selects INA1 input. When LOW, selects INA0 input. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>15, 16</td>
<td>nQB, QB</td>
<td>Output</td>
<td>Differential output pair. LVDS interface levels.</td>
</tr>
</tbody>
</table>

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>R<sub>PULLUP</sub></td>
<td>Input Pullup Resistor</td>
<td></td>
<td>37.5</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>R<sub>PULLDOWN</sub></td>
<td>Input Pulldown Resistor</td>
<td></td>
<td>37.5</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
</tbody>
</table>

Function Tables

Table 3. Control Input Function Table

<table>
<thead>
<tr>
<th>Control Inputs</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>SELA</td>
<td>SELB</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

<table>
<thead>
<tr>
<th>Item</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage, V_{DD}</td>
<td>4.6V</td>
</tr>
<tr>
<td>Inputs, V_I</td>
<td>-0.5V to $V_{DD} + 0.5V$</td>
</tr>
<tr>
<td>Outputs, I_O</td>
<td>0mA</td>
</tr>
<tr>
<td>Continuous Current</td>
<td>10mA</td>
</tr>
<tr>
<td>Surge Current</td>
<td>15mA</td>
</tr>
<tr>
<td>Package Thermal Impedance, θ_{JA}</td>
<td>74.7°C/W (0 mps)</td>
</tr>
<tr>
<td>Storage Temperature, T_{STG}</td>
<td>-65°C to 150°C</td>
</tr>
</tbody>
</table>

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, $V_{DD} = 2.5V \pm 5\%$, $T_A = -40°C$ to 85°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DD}</td>
<td>Positive Supply Voltage</td>
<td></td>
<td>2.375</td>
<td>2.5</td>
<td>2.625</td>
<td>V</td>
</tr>
<tr>
<td>I_{DD}</td>
<td>Power Supply Current</td>
<td></td>
<td></td>
<td>82</td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

Table 4B. LVCMOS/LVTTL DC Characteristics, $V_{DD} = 2.5V \pm 5\%$, $T_A = -40°C$ to 85°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IH}</td>
<td>Input High Voltage</td>
<td>$V_{DD} = V_{IN} = 2.625V$</td>
<td>1.7</td>
<td>$V_{DD} + 0.3$</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Input Low Voltage</td>
<td></td>
<td>0</td>
<td>0.7</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{IH}</td>
<td>Input High Current</td>
<td>SELA, SELB</td>
<td>$V_{DD} = V_{IN} = 2.625V$</td>
<td></td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>I_{IL}</td>
<td>Input Low Current</td>
<td>SELA, SELB</td>
<td>$V_{DD} = 2.625V, V_{IN} = 0V$</td>
<td>-150</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4C. DC Characteristics, $V_{DD} = 2.5V \pm 5\%$, $T_A = -40°C$ to 85°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>-40°C</th>
<th>25°C</th>
<th>85°C</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{IH}</td>
<td>Input High Current</td>
<td>$I_{NAx}, I_{NB}, nI_{NAx}, nI_{NB}$</td>
<td>150</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>I_{IL}</td>
<td>Input Low Current</td>
<td>$I_{NAx}, I_{NB}, nI_{NAx}, nI_{NB}$</td>
<td>-10</td>
<td>-10</td>
<td>-10</td>
</tr>
<tr>
<td>V_{PP}</td>
<td>Peak-to-Peak Input Voltage</td>
<td></td>
<td>0.15</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>V_{CMR}</td>
<td>Common Mode Input Voltage; NOTE 1</td>
<td></td>
<td>1.2</td>
<td>V_{DD}</td>
<td>V_{DD}</td>
</tr>
</tbody>
</table>

NOTE 1: Common mode input voltage is defined as V_{IH}.

© 2019 Renesas Electronics Corporation
Table 4D. LVDS DC Characteristics, \(V_{DD} = 2.5V \pm 5\% \), \(T_A = -40°C \) to 85°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>(-40°C)</th>
<th>(25°C)</th>
<th>85°C</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Min</td>
<td>Typ</td>
<td>Max</td>
<td>Min</td>
</tr>
<tr>
<td>(V_{OD})</td>
<td>Differential Output Voltage</td>
<td>247</td>
<td>350</td>
<td>454</td>
<td>247</td>
</tr>
<tr>
<td>(\Delta V_{OD})</td>
<td>(V_{OD}) Magnitude Change</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>(V_{OS})</td>
<td>Offset Voltage</td>
<td>1.125</td>
<td>1.25</td>
<td>1.375</td>
<td>1.125</td>
</tr>
<tr>
<td>(\Delta V_{OS})</td>
<td>(V_{OS}) Magnitude Change</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

NOTE: Refer to Parameter Measurement Information, 2.5V Output Load Test Circuit diagram.

AC Electrical Characteristics

Table 5. AC Characteristics, \(V_{DD} = 2.5V \pm 5\% \), \(T_A = -40°C \) to 85°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{OUT})</td>
<td>Output Frequency</td>
<td>(2.5) GHz</td>
<td>2.5 MHz</td>
<td>2.5 MHz</td>
<td>2.5 MHz</td>
<td>GHz</td>
</tr>
<tr>
<td>(t_{PD})</td>
<td>Propagation Delay; NOTE 1</td>
<td>(INAx) to (QB) or (INB) to (QAx)</td>
<td>250 ps</td>
<td>600 ps</td>
<td>600 ps</td>
<td>ps</td>
</tr>
<tr>
<td>(t_{sk(pp)})</td>
<td>Part-to-Part Skew; NOTE 2, 3</td>
<td>(INAx) to (QAx)</td>
<td>300 ps</td>
<td>600 ps</td>
<td>600 ps</td>
<td>ps</td>
</tr>
<tr>
<td>(t_{jit})</td>
<td>Buffer Additive Phase Jitter, RMS; refer to Additive Phase Jitter Section</td>
<td>(f_{OUT} = 622.08MHz, 12kHz – 20MHz)</td>
<td>0.031 ps</td>
<td>0.031 ps</td>
<td>0.031 ps</td>
<td>ps</td>
</tr>
<tr>
<td>(t_R) / (t_F)</td>
<td>Output Rise/Fall Time</td>
<td>(20%) to (80%)</td>
<td>60 ps</td>
<td>300 ps</td>
<td>300 ps</td>
<td>ps</td>
</tr>
<tr>
<td>MUX_ISOLATION</td>
<td>MUX Isolation; NOTE 4</td>
<td>(f_{OUT} = 500MHz) output, (V_{PP} = 400mV)</td>
<td>65 dB</td>
<td>65 dB</td>
<td>65 dB</td>
<td>dB</td>
</tr>
</tbody>
</table>

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE: All parameters measured at \(\leq 1.7GHz \) unless otherwise noted.

NOTE 1: Measured from the differential input crossing point to the differential output crossing point.

NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltage, same temperature and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.

NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

NOTE 4: \(Q \), \(nQ \) output measured differentially. See MUX Isolation Diagram in Parameter Measurement Information section.
Additive Phase Jitter

The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the **dBc Phase Noise**. This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm) or a ratio of the power in the 1Hz band to the power in the fundamental. When the required offset is specified, the phase noise is called a **dBc** value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot.

As with most timing specifications, phase noise measurements has issues relating to the limitations of the equipment. Often the noise floor of the equipment is higher than the noise floor of the device. This is illustrated above. The device meets the noise floor of what is shown, but can actually be lower. The phase noise is dependent on the input source and measurement equipment.

The source generator "IFR2042 10kHz – 56.4GHz Low Noise Signal Generator as external input to an Agilent 8133A 3GHz Pulse Generator."
Parameter Measurement Information

LVDS Output Load AC Test Circuit

Differential Input Level

Part-to-Part Skew

MUX Isolation

Output Rise/Fall Time

Propagation Delay
Parameter Measurement Information, continued

Differential Output Voltage Setup

Offset Voltage Setup
Application Information

Wiring the Differential Input to Accept Single-Ended Levels

Figure 1 shows how a differential input can be wired to accept single ended levels. The reference voltage \(V_{\text{REF}} = \frac{V_{\text{DD}}}{2} \) is generated by the bias resistors R1 and R2. The bypass capacitor (C1) is used to help filter noise on the DC bias. This bias circuit should be located as close to the input pin as possible. The ratio of R1 and R2 might need to be adjusted to position the \(V_{\text{REF}} \) in the center of the input voltage swing. For example, if the input clock swing is 2.5V and \(V_{\text{DD}} = 3.3V \), R1 and R2 value should be adjusted to set \(V_{\text{REF}} \) at 1.25V. The values below are for when both the single ended swing and \(V_{\text{DD}} \) are at the same voltage. This configuration requires that the sum of the output impedance of the driver (Ro) and the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the input will attenuate the signal in half. This can be done in one of two ways. First, R3 and R4 in parallel should equal the transmission line impedance. For most 50Ω applications, R3 and R4 can be 100Ω. The values of the resistors can be increased to reduce the loading for slower and weaker LVCMOS driver. When using single-ended signaling, the noise rejection benefits of differential signaling are reduced. Even though the differential input can handle full rail LVCMOS signaling, it is recommended that the amplitude be reduced. The datasheet specifies a lower differential amplitude, however this only applies to differential signals. For single-ended applications, the swing can be larger, however \(V_{\text{IL}} \) cannot be less than -0.3V and \(V_{\text{IH}} \) cannot be more than \(V_{\text{DD}} + 0.3V \). Though some of the recommended components might not be used, the pads should be placed in the layout. They can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a differential signal.

![Figure 1. Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels](image)

Recommendations for Unused Input and Output Pins

Inputs:

IN/nIN Inputs

For applications not requiring the use of the differential input, both INx and nINx can be left floating. Though not required, but for additional protection, a 1kΩ resistor can be tied from INx to ground.

LVCMOS Control Pins

All control pins have internal pulldowns; additional resistance is not required but can be added for additional protection. A 1kΩ resistor can be used.

Outputs:

LVDS Outputs

All unused LVDS output pairs can be either left floating or terminated with 100Ω across. If they are left floating, we recommend that there is no trace attached.
Differential Clock Input Interface

The IN /nIN accepts LVPECL, CML, LVDS and other differential signals. The differential signal must meet the V_{PP} and V_{CMR} input requirements. Figures 2A to 2D show interface examples for the IN /nIN input driven by the most common driver types. The input interfaces suggested here are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements.

Figure 2A. IN/nIN Input Driven by an Open Collector CML Driver

Figure 2B. IN/nIN Input Driven by a Built-In Pullup CML Driver

Figure 2C. IN/nIN Input Driven by a 3.3V LVPECL Driver

Figure 2D. IN/nIN Input Driven by a 3.3V LVDS Driver
VFQFN EPAD Thermal Release Path

In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in Figure 3. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts.

While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as “heat pipes”. The number of vias (i.e. “heat pipes”) are application specific and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a guideline only. For further information, please refer to the Application Note on the Surface Mount Assembly of Amkor’s Thermally/ Electrically Enhance Leadframe Base Package, Amkor Technology.

Figure 3. P.C. Assembly for Exposed Pad Thermal Release Path – Side View (drawing not to scale)
LVDS Driver Termination

A general LVDS interface is shown in Figure 4. Standard termination for LVDS type output structure requires both a 100Ω parallel resistor at the receiver and a 100Ω differential transmission line environment. In order to avoid any transmission line reflection issues, the 100Ω resistor must be placed as close to the receiver as possible. IDT offers a full line of LVDS compliant devices with two types of output structures: current source and voltage source. The standard termination schematic as shown in Figure 4 can be used with either type of output structure. If using a non-standard termination, it is recommended to contact IDT and confirm if the output is a current source or a voltage source type structure. In addition, since these outputs are LVDS compatible, the input receivers amplitude and common mode input range should be verified for compatibility with the output.

![Figure 4. Typical LVDS Driver Termination](image)

Host Adapter Board

![Figure 5. Typical Application Diagram for Host Bus Adapter Boards for routing Between Internal and External Connectors](image)
Figure 6. Typical Application Diagram for Hot Swappable Links to Redundant Switch Fabric Cards
Power Considerations

This section provides information on power dissipation and junction temperature for the ICS854S54I-01. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the ICS854S54I-01 is the sum of the core power plus the power dissipation in the load(s). The following is the power dissipation for \(V_{DD} = 2.5V + 5\% = 2.625V \), which gives worst case results.

\[
\text{NOTE: Please refer to Section 3 for details on calculating power dissipation in the load.}
\]

- Power (core)_{MAX} = V_{DD,MAX} \cdot I_{DD,MAX} = 2.625V \cdot 82mA = 214.5mW

2. Junction Temperature.

Junction temperature, \(T_j \), is the temperature at the junction of the bond wire and bond pad, and directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, \(T_j \), to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for \(T_j \) is as follows:

\[
T_j = \theta_{JA} \cdot P_{d_total} + T_A
\]

- \(\theta_{JA} \) = Junction-to-Ambient Thermal Resistance
- \(P_{d_total} \) = Total Device Power Dissipation (example calculation is in section 1 above)
- \(T_A \) = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance \(\theta_{JA} \) must be used. Assuming no air flow and a multi-layer board, the appropriate value is 74.7°C/W per Table 6 below.

Therefore, \(T_j \) for an ambient temperature of 85°C with all outputs switching is:

\[
85°C + 0.215W \cdot 74.7°C/W = 101.1°C. \quad \text{This is below the limit of 125°C.}
\]

This calculation is only an example. \(T_j \) will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 6. Thermal Resistance \(\theta_{JA} \) for 16 Lead VFQFN, Forced Convection

<table>
<thead>
<tr>
<th>Meters per Second</th>
<th>(\theta_{JA}) by Velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Multi-Layer PCB, JEDEC Standard Test Boards</td>
<td>74.7°C/W</td>
</tr>
</tbody>
</table>
Reliability Information

Table 7. θ_{JA} vs. Air Flow Table for a 16 Lead VFQFN

<table>
<thead>
<tr>
<th>Meters per Second</th>
<th>θ_{JA} by Velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Multi-Layer PCB, JEDEC Standard Test Boards</td>
<td>74.7°C/W</td>
</tr>
</tbody>
</table>

Transistor Count

The transistor count for ICS854S54I-01 is 329.

This device is pin and function compatible and a suggested replacement for ICS85454-01.
Ordering Information

Table 9. Ordering Information

<table>
<thead>
<tr>
<th>Part/Order Number</th>
<th>Marking</th>
<th>Package</th>
<th>Shipping Packaging</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>854S54AKI-01LF</td>
<td>4A01</td>
<td>“Lead-Free” 16 Lead VFQFN</td>
<td>Tube</td>
<td>-40°C to 85°C</td>
</tr>
<tr>
<td>854S54AKI-01LFT</td>
<td>4A01</td>
<td>“Lead-Free” 16 Lead VFQFN</td>
<td>2500 Tape & Reel</td>
<td>-40°C to 85°C</td>
</tr>
</tbody>
</table>

NOTE: Parts that are ordered with an “LF” suffix to the part number are the Pb-Free configuration and are RoHS compliant.

Revision History

<table>
<thead>
<tr>
<th>Revision Date</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 17, 2017</td>
<td>Updated the Package Outline Drawings. No technical changes.</td>
</tr>
<tr>
<td>March 29, 2010</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades. "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 - **Standard**: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - **High Quality**: Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

6. Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

 (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

 (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2019 Renesas Electronics Corporation. All rights reserved.