Description

The IDT8SLVP1104I is a high-performance differential LVPECL fanout buffer. The device is designed for the fanout of high-frequency, very low additive phase-noise clock and data signals. The IDT8SLVP1104I is characterized to operate from a 3.3V or 2.5V power supply. Guaranteed output-to-output and part-to-part skew characteristics make the IDT8SLVP1104I ideal for those clock distribution applications demanding well-defined performance and repeatability. Four low skew outputs are available. The integrated bias voltage reference enables easy interfacing of single-ended signals to the device inputs. The device is optimized for low power consumption and low additive phase noise.

Features

- Four low skew, low additive jitter LVPECL differential output pairs
- Differential LVPECL input pair can accept the following differential input levels: LVDS, LVPECL, CML
- Differential PCLKx pairs can also accept single-ended LVCMOS levels. See the Applications section Writing the Differential Input Levels to Accept Single-ended Levels (Figures 1 and 2)
- Maximum input clock frequency: 2GHz
- LVCMOS interface levels for the control input (input select)
- Output skew: 5ps (typical)
- Propagation delay: 320ps (maximum)
- Low additive phase jitter, RMS; $f_{REF} = 156.25$MHz, $V_{PP} = 1V$, 12kHz - 20MHz: 40fs (maximum)
- Maximum device current consumption (I_{EE}): 60mA (maximum)
- Full 3.3V or 2.5V supply voltage
- Lead-free (RoHS 6) packaging
- -40°C to 85°C ambient operating temperature

Block Diagram

![Block Diagram](image)

Pin Assignment

![Pin Assignment](image)

IDT8SLVP1104I
16 lead VFQFPN
3.0mm x 3.0mm x 0.925mm package body
1.7mm x 1.7mm Epad Size
NL Package
Top View
Pin Descriptions and Characteristics

Table 1. Pin Descriptions

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V_{EE}</td>
<td>Power</td>
<td>Negative supply pin.</td>
</tr>
<tr>
<td>2</td>
<td>nc</td>
<td>Unused</td>
<td>Do not connect.</td>
</tr>
<tr>
<td>3</td>
<td>nc</td>
<td>Unused</td>
<td>Do not connect.</td>
</tr>
<tr>
<td>4</td>
<td>nc</td>
<td>Unused</td>
<td>Do not connect.</td>
</tr>
<tr>
<td>5</td>
<td>V_{CC}</td>
<td>Power</td>
<td>Power supply pin.</td>
</tr>
<tr>
<td>6</td>
<td>PCLK</td>
<td>Input</td>
<td>Non-inverting differential LVPECL clock/data input.</td>
</tr>
<tr>
<td>7</td>
<td>nPCLK</td>
<td>Input</td>
<td>Inverting differential LVPECL clock/data input. $V_{CC}/2$ default when left floating.</td>
</tr>
<tr>
<td>8</td>
<td>V_{REF}</td>
<td>Output</td>
<td>Bias voltage reference for the PCLK inputs.</td>
</tr>
<tr>
<td>9, 10</td>
<td>Q0, nQ0</td>
<td>Output</td>
<td>Differential output pair 0. LVPECL interface levels.</td>
</tr>
<tr>
<td>11, 12</td>
<td>Q1, nQ1</td>
<td>Output</td>
<td>Differential output pair 1. LVPECL interface levels.</td>
</tr>
<tr>
<td>13, 14</td>
<td>Q2, nQ2</td>
<td>Output</td>
<td>Differential output pair 2. LVPECL interface levels.</td>
</tr>
<tr>
<td>15, 16</td>
<td>Q3, nQ3</td>
<td>Output</td>
<td>Differential output pair 3. LVPECL interface levels.</td>
</tr>
</tbody>
</table>

NOTE: Pulldown and Pullup refers to an internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{IN}</td>
<td>Input Capacitance</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>$R_{PULLDOWN}$</td>
<td>Input Pulldown Resistor</td>
<td></td>
<td>51</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>R_{PULLUP}</td>
<td>Input Pullup Resistor</td>
<td></td>
<td>51</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
</tbody>
</table>
Absolute Maximum Ratings

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

<table>
<thead>
<tr>
<th>Item</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage, (V_{CC})</td>
<td>4.6V</td>
</tr>
<tr>
<td>Inputs, (V_I)</td>
<td>-0.5V to (V_{CC} + 0.5V)</td>
</tr>
<tr>
<td>Outputs, (I_O) (LVPECL)</td>
<td>50mA</td>
</tr>
<tr>
<td>Continuous Current</td>
<td>100mA</td>
</tr>
<tr>
<td>Surge Current</td>
<td>±2mA</td>
</tr>
<tr>
<td>Maximum Junction Temperature, (T_{J,MAX})</td>
<td>125°C</td>
</tr>
<tr>
<td>Storage Temperature, (T_{STG})</td>
<td>-65°C to 150°C</td>
</tr>
<tr>
<td>ESD - Human Body Model, NOTE 1</td>
<td>2000V</td>
</tr>
<tr>
<td>ESD - Charged Device Model, NOTE 1</td>
<td>1500V</td>
</tr>
</tbody>
</table>

NOTE 1: According to JEDEC/JESD 22-A114/22-C101.

DC Electrical Characteristics

Table 3A. Power Supply DC Characteristics, \(V_{CC} = 3.3V \pm 5\% \), \(V_{EE} = 0V \), \(T_A = -40°C \) to 85°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CC})</td>
<td>Power Supply Voltage</td>
<td></td>
<td>3.135</td>
<td>3.3V</td>
<td>3.465</td>
<td>V</td>
</tr>
<tr>
<td>(I_{EE})</td>
<td>Power Supply Current</td>
<td></td>
<td>53</td>
<td>60</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>(I_{CC})</td>
<td>Power Supply Current</td>
<td>Q0 to Q3 terminated 50Ω to (V_{CC} - 2V)</td>
<td>170</td>
<td>204</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

Table 3B. Power Supply DC Characteristics, \(V_{CC} = 2.5V \pm 5\% \), \(V_{EE} = 0V \), \(T_A = -40°C \) to 85°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{CC})</td>
<td>Power Supply Voltage</td>
<td></td>
<td>2.375</td>
<td>2.5V</td>
<td>2.625</td>
<td>V</td>
</tr>
<tr>
<td>(I_{EE})</td>
<td>Power Supply Current</td>
<td></td>
<td>49</td>
<td>55</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>(I_{CC})</td>
<td>Power Supply Current</td>
<td>Q0 to Q3 terminated 50Ω to (V_{CC} - 2V)</td>
<td>170</td>
<td>199</td>
<td>mA</td>
<td></td>
</tr>
</tbody>
</table>

Table 3C. LVPECL DC Characteristics, \(V_{CC} = 3.3V \pm 5\% \), \(V_{EE} = 0V \), \(T_A = -40°C \) to 85°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{IH})</td>
<td>Input High Current</td>
<td>PCLK, nPCLK</td>
<td>(V_{CC} = V_{IN} = 3.465V)</td>
<td>150</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>(I_{IL})</td>
<td>Input Low Current</td>
<td>PCLK, nPCLK</td>
<td>(V_{CC} = 3.465V, V_{IN} = 0V)</td>
<td>-10</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>(V_{REF})</td>
<td>Reference Voltage for Input Bias</td>
<td>(I_{REF} = \pm 1mA)</td>
<td>(V_{CC} - 1.6)</td>
<td>(V_{CC} - 1.3)</td>
<td>(V_{CC} - 1.1)</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OH})</td>
<td>Output High Voltage; NOTE 1</td>
<td></td>
<td>(V_{CC} - 1.1)</td>
<td>(V_{CC} - 0.9)</td>
<td>(V_{CC} - 0.7)</td>
<td>V</td>
</tr>
<tr>
<td>(V_{OL})</td>
<td>Output Low Voltage; NOTE 1</td>
<td></td>
<td>(V_{CC} - 2.0)</td>
<td>(V_{CC} - 1.65)</td>
<td>(V_{CC} - 1.5)</td>
<td>V</td>
</tr>
</tbody>
</table>

NOTE 1: Outputs terminated with 50Ω to \(V_{CC} - 2V \).
Table 3D. LVPECL DC Characteristics, $V_{CC} = 2.5\, \text{V} \pm 5\%$, $V_{EE} = 0\, \text{V}$, $TA = -40^\circ\text{C}$ to 85°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{IH}</td>
<td>Input High Current</td>
<td>$PCLK$, $nPCLK$</td>
<td>$V_{CC} = V_{IN} = 2.625, \text{V}$</td>
<td>150</td>
<td></td>
<td>μA</td>
</tr>
<tr>
<td>I_{IL}</td>
<td>Input Low Current</td>
<td>$PCLK$, $nPCLK$</td>
<td>$V_{CC} = 2.625, \text{V}$, $V_{IN} = 0, \text{V}$</td>
<td>-10</td>
<td>-150</td>
<td>μA</td>
</tr>
<tr>
<td>V_{REF}</td>
<td>Reference Voltage for Input Bias</td>
<td>$I_{REF} = \pm 1, \text{mA}$</td>
<td>$V_{CC} = 1.6, \text{V}$</td>
<td>$V_{CC} = 1.3, \text{V}$</td>
<td>$V_{CC} = 1.1, \text{V}$</td>
<td>V</td>
</tr>
<tr>
<td>V_{OH}</td>
<td>Output High Voltage; NOTE 1</td>
<td>$V_{CC} = 1.1, \text{V}$</td>
<td>$V_{CC} = 0.9, \text{V}$</td>
<td>$V_{CC} = 0.7, \text{V}$</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Output Low Voltage; NOTE 1</td>
<td>$V_{CC} = 2.0, \text{V}$</td>
<td>$V_{CC} = 1.6, \text{V}$</td>
<td>$V_{CC} = 1.5, \text{V}$</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1: Outputs terminated with $50\, \Omega$ to $V_{CC} = 2\, \text{V}$.
AC Electrical Characteristics

Table 4. AC Electrical Characteristics, $V_{CC} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $V_{EE} = 0V$, $T_A = -40^\circ C$ to $85^\circ C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{REF}</td>
<td>Input Frequency</td>
<td>PCL, nPCL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta V/\Delta t$</td>
<td>Input Edge Rate</td>
<td>PCL, nPCL</td>
<td>1.5</td>
<td></td>
<td></td>
<td>V/ns</td>
</tr>
<tr>
<td>t_{PD}</td>
<td>Propagation Delay; NOTE 1</td>
<td>PCK, nPCL to any Q[0:3], nQ[0:3] for $V_{PP} = 0.1V$ or $0.3V$</td>
<td>120</td>
<td>200</td>
<td>320</td>
<td>ps</td>
</tr>
<tr>
<td>$t_{sk(o)}$</td>
<td>Output Skew; NOTE 2, 3</td>
<td></td>
<td>5</td>
<td>25</td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>$t_{sk(p)}$</td>
<td>Pulse Skew</td>
<td>$f_{REF} = 100MHz$</td>
<td>5</td>
<td>20</td>
<td></td>
<td>ps</td>
</tr>
<tr>
<td>$t_{sk(pp)}$</td>
<td>Part-to-Part Skew; NOTE 3, 4</td>
<td></td>
<td>100</td>
<td>200</td>
<td></td>
<td>ps</td>
</tr>
</tbody>
</table>

$\left| t_{JIT} \right|$ Buffer Additive Phase Jitter, RMS; refer to Additive Phase Jitter Section

- $f_{REF} = 122.88MHz$ Sine Wave, $V_{PP} = 1V$, Integration Range: $1kHz$ – $40MHz$
 - Minimum: 170 fs
 - Typical: 114 fs
 - Maximum: 42 fs

- $f_{REF} = 156.25MHz$ Square Wave, $V_{PP} = 0.5V$, Integration Range: $1kHz$ – $40MHz$
 - Minimum: 114 fs
 - Typical: 71 fs
 - Maximum: 51 fs

- $f_{REF} = 156.25MHz$ Square Wave, $V_{PP} = 0.5V$, Integration Range: $10kHz$ – $20MHz$
 - Minimum: 32 fs
 - Typical: 52 fs
 - Maximum: 38 fs

V_{PP} Peak-to-Peak Input Voltage; NOTE 5, 6

- $f_{REF} < 1.5 GHz$
 - Minimum: 0.1 V
 - Typical: 1.5 V
 - Maximum: 0.2 V

- $f_{REF} > 1.5 GHz$
 - Minimum: 1.0 V
 - Typical: $V_{CC} - 0.6 V$

V_{CMR} Common Mode Input Voltage; NOTE 5, 6, 7

- Minimum: 1.0 V

$V_{O(pp)}$ Output Voltage Swing, Peak-to-Peak

- $V_{CC} = 3.3V$, $f_{REF} \leq 2GHz$
 - Minimum: 0.45 V
 - Typical: 0.75 V
 - Maximum: 0.4 V

- $V_{CC} = 2.5V$, $f_{REF} \leq 2GHz$
 - Minimum: 0.65 V
 - Typical: 1.0 V

V_{DIFF_OUT} Differential Output Voltage Swing, Peak-to-Peak

- $V_{CC} = 3.3V$, $f_{REF} \leq 2GHz$
 - Minimum: 0.9 V
 - Typical: 1.5 V
 - Maximum: 0.8 V

- $V_{CC} = 2.5V$, $f_{REF} \leq 2GHz$
 - Minimum: 1.0 V
 - Typical: 2.0 V

Notes

- **NOTE 1:** Measured from the differential input crossing point to the differential output crossing point.
- **NOTE 2:** Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the differential crosspoints.
- **NOTE 3:** This parameter is defined in accordance with JEDEC Standard 65.

NOTES continued on next page.
NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltage, same frequency, same temperature and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.

NOTE 5: For single-ended LVCMOS input applications, refer to the Applications section Writing the Differential Input Levels to Accept Single-ended Levels (Figures 1 and 2).

NOTE 6: V_{IL} should not be less than -0.3V.

NOTE 7: Common mode input voltage is defined as the crosspoint.
Additive Phase Jitter

The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the **dBc Phase Noise**. This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm) or a ratio of the power in the 1Hz band to the power in the fundamental. When the required offset is specified, the phase noise is called a **dBc** value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot.

![Phase Noise Graph]

As with most timing specifications, phase noise measurements has issues relating to the limitations of the equipment. Often the noise floor of the equipment is higher than the noise floor of the device. This is illustrated above. The device meets the noise floor of what is shown, but can actually be lower. The phase noise is dependent on the input source and measurement equipment.

Measured using a Wenzel 156.25MHz Oscillator as the input source.
Parameter Measurement Information

3.3V LVPECL Output Load Test Circuit

2.5V LVPECL Output Load Test Circuit

Differential Input Level

Output Skew

Part-to-Part Skew

Pulse Skew
Parameter Measurement Information, continued

Propagation Delay

Output Rise/Fall Time
Applications Information

Wiring the Differential Input to Accept Single-Ended Levels

The IDT8SLVP1104I inputs can be interfaced to LVPECL, LVDS, CML or LVCMOS drivers. Figure 1A illustrates how to dc couple a single LVCMOS input to the IDT8SLVP1104I. The value of the series resistance RS is calculated as the difference between the transmission line impedance and the driver output impedance. This resistor should be placed close to the LVCMOS driver. To avoid cross-coupling of single-ended LVCMOS signals, apply the LVCMOS signals to no more than one PCLK input.

A practical method to implement Vth is shown in Figure 1B below. The reference voltage Vth = V1 = VCC/2, is generated by the bias resistors R1 and R2. The bypass capacitor (C1) is used to help filter noise on the DC bias. This bias circuit should be located as close to the input pin as possible.

The ratio of R1 and R2 might need to be adjusted to position the V1 in the center of the input voltage swing. For example, if the input clock swing is 2.5V and VCC = 3.3V, R1 and R2 value should be adjusted to set V1 at 1.25V. The values below apply when both the single-ended swing and VCC are at the same voltage.

When using single-ended signaling, the noise rejection benefits of differential signaling are reduced. Even though the differential input can handle full rail LVCMOS signaling, it is recommended that the amplitude be reduced, particularly if both input references are LVCMOS to minimize cross talk. The datasheet specifies a lower differential amplitude, however this only applies to differential signals. For single-ended applications, the swing can be larger, however VIL cannot be less than -0.3V and VIH cannot be more than VCC + 0.3V.

Figure 1B shows a way to attenuate the PCLK input level by a factor of two as well as matching the transmission line between the LVCMOS driver and the IDT8SLVP1104I at both the source and the load. This configuration requires that the sum of the output impedance of the driver (Ro) and the series resistance (Rs) equals the transmission line impedance. R3 and R4 in parallel should equal the transmission line impedance; for most 50Ω applications, R3 and R4 will be 100Ω. The values of the resistors can be increased to reduce the loading for slower and weaker LVCMOS driver.

Though some of the recommended components of Figure 1B might not be used, the pads should be placed in the layout so that they can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a differential signal.
3.3V LVPECL Clock Input Interface

The PCLK/nPCLK accepts LVPECL, LVDS, CML and other differential signals. Both signals must meet the V_{pp} and V_{CMR} input requirements. Figures 2A to 2E show interface examples for the PCLK/ nPCLK input driven by the most common driver types. The input interfaces suggested here are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements.
2.5V LVPECL Clock Input Interface

The PCLK /nPCLK accepts LVPECL, LVDS, CML and other differential signals. Both signals must meet the \(V_{pp}\) and \(V_{CMR}\) input requirements. *Figures 3A to 3E* show interface examples for the PCLK/ nPCLK input driven by the most common driver types. The input interfaces suggested here are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements.

Figure 3A. PCLK/nPCLK Input Driven by a CML Driver

Figure 3B. PCLK/nPCLK Input Driven by a Built-In Pullup CML Driver

Figure 3C. PCLK/nPCLK Input Driven by a 2.5V LVPECL Driver

Figure 3D. PCLK/nPCLK Input Driven by a 2.5V LVPECL Driver with AC Couple

Figure 3E. PCLK/nPCLK Input Driven by a 2.5V LVDS Driver
Recommendations for Unused Output Pins

Outputs:

LVPECL Outputs

All unused LVPECL outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.

VFQFPN EPAD Thermal Release Path

In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in Figure 4. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts.

While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as “heat pipes”. The number of vias (i.e. “heat pipes”) are application specific and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a guideline only. For further information, please refer to the Application Note on the Surface Mount Assembly of Amkor’s Thermally/Electrically Enhance Leadframe Base Package, Amkor Technology.

![Figure 4. P.C. Assembly for Exposed Pad Thermal Release Path – Side View (drawing not to scale)](image-url)
Termination for 3.3V LVPECL Outputs

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

The differential outputs are a low impedance follower output that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. Figures 5A and 5B show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

Figure 5A. 3.3V LVPECL Output Termination

Figure 5B. 3.3V LVPECL Output Termination
Termination for 2.5V LVPECL Outputs

Figure 6A and Figure 6B show examples of termination for 2.5V LVPECL driver. These terminations are equivalent to terminating 50Ω to $V_{CC} - 2V$. For $V_{CC} = 2.5V$, the $V_{CC} - 2V$ is very close to ground level. The R3 in Figure 6B can be eliminated and the termination is shown in Figure 6C.
Power Considerations
This section provides information on power dissipation and junction temperature for the IDT8SLVP1104I. Equations and example calculations are also provided.

1. Power Dissipation.
The total power dissipation for the IDT8SLVP1104I is the sum of the core power plus the power dissipated due to loading. The following is the power dissipation for $V_{CC} = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated due to loading.

The maximum current at 85° is as follows:

$I_{EE,\text{MAX}} = 60mA$

- Power (core)$_{\text{MAX}} = V_{CC,\text{MAX}} \times I_{EE,\text{MAX}} = 3.465V \times 60mA = 207.9mW$
- Power (outputs)$_{\text{MAX}} = 33.2mW/$Loaded Output pair

If all outputs are loaded, the total power is $4 \times 33.2mW = 132.8mW$

Total Power$_{\text{MAX}}$ (3.465V, with all outputs switching) = 207.9mW + 132.8mW = 340.7mW

2. Junction Temperature.
Junction temperature, T_j, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, T_j, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for T_j is as follows: $T_j = \theta_{JA} \times P_d_{\text{total}} + T_A$

$T_j =$ Junction Temperature

$\theta_{JA} =$ Junction-to-Ambient Thermal Resistance

$P_d_{\text{total}} =$ Total Device Power Dissipation (example calculation is in section 1 above)

$T_A =$ Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 74.7°C/W per Table 5 below.

Therefore, T_j for an ambient temperature of 85°C with all outputs switching is:

85°C + 0.341W \times 74.7^\circ$C/W = 110.5°C. This is below the limit of 125°C.

This calculation is only an example. T_j will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 5. Thermal Resistance θ_{JA} for 16-Lead VFQFPN, Forced Convection

<table>
<thead>
<tr>
<th>Meters per Second</th>
<th>θ_{JA} by Velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Layer PCB, JEDEC Standard Test Boards</td>
<td>74.7°C/W</td>
</tr>
</tbody>
</table>
3. Calculations and Equations.
The purpose of this section is to calculate the power dissipation for the LVPECL output pair.
LVPECL output driver circuit and termination are shown in Figure 7.

![Figure 7. LVPECL Driver Circuit and Termination](image)

To calculate power dissipation due to loading, use the following equations which assume a 50Ω load, and a termination voltage of $V_{CC} - 2V$. These are typical calculations.

- For logic high, $V_{OUT} = V_{OH_MAX} = V_{CC_MAX} - 0.7V$

 $(V_{CC_MAX} - V_{OH_MAX}) = 0.7V$

- For logic low, $V_{OUT} = V_{OL_MAX} = V_{CC_MAX} - 1.5V$

 $(V_{CC_MAX} - V_{OL_MAX}) = 1.5V$

P_{d_H} is power dissipation when the output drives high.

P_{d_L} is the power dissipation when the output drives low.

$P_{d_H} = [(V_{OH_MAX} - (V_{CC_MAX} - 2V))/R_L] * (V_{CC_MAX} - V_{OH_MAX}) = [(2V - (V_{CC_MAX} - V_{OH_MAX}))/R_L] * (V_{CC_MAX} - V_{OH_MAX}) = [(2V - 0.7V)/50\Omega] * 0.7V = 18.2mW$

$P_{d_L} = [(V_{OL_MAX} - (V_{CC_MAX} - 2V))/R_L] * (V_{CC_MAX} - V_{OL_MAX}) = [(2V - (V_{CC_MAX} - V_{OL_MAX}))/R_L] * (V_{CC_MAX} - V_{OL_MAX}) = [(2V - 1.5V)/50\Omega] * 1.5V = 15mW$

Total Power Dissipation per output pair = $P_{d_H} + P_{d_L} = 33.2mW$
Reliability Information

Table 6. θ_{JA} vs. Air Flow Table for a 16-Lead VFQFPN

<table>
<thead>
<tr>
<th>Meters per Second</th>
<th>0</th>
<th>1</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Layer PCB, JEDEC Standard Test Boards</td>
<td>74.7°C/W</td>
<td>65.3°C/W</td>
<td>58.5°C/W</td>
</tr>
</tbody>
</table>

Transistor Count

The transistor count for the IDT8SLVP1104I is: 258

Package Outline Drawings

The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is the most current data available.

Ordering Information

Table 7. Ordering Information

<table>
<thead>
<tr>
<th>Part/Order Number</th>
<th>Marking</th>
<th>Package</th>
<th>Shipping Packaging</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>8SLVP1104ANLGI</td>
<td>104AI</td>
<td>“Lead-Free” 16-Lead VFQFPN</td>
<td>Tube</td>
<td>-40°C to 85°C</td>
</tr>
<tr>
<td>8SLVP1104ANLGI8</td>
<td>104AI</td>
<td>“Lead-Free” 16-Lead VFQFPN</td>
<td>Tape & Reel</td>
<td>-40°C to 85°C</td>
</tr>
</tbody>
</table>
Revision History

<table>
<thead>
<tr>
<th>Revision Date</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 13, 2018</td>
<td>Updated the package outline drawings; however, no technical changes</td>
</tr>
<tr>
<td></td>
<td>Completed other minor changes</td>
</tr>
<tr>
<td>February 25, 2014</td>
<td>Ordering Information: changed Tray to Tube.</td>
</tr>
</tbody>
</table>
16-VFQFPN Package Outline Drawing
3.0 x 3.0 x 0.9 mm, 0.5mm Pitch, 1.70 x 1.70 mm Epad
NL/NLG16P2, PSC-4169-02, Rev 05, Page 1

NOTES:
1. ALL DIMENSIONS ARE IN mm. ANGLES IN DEGREES
<p>RECOMMENDED LAND PATTERN DIMENSION</p>

 ALL DIMENSIONS ARE IN mm. ANGLES IN DEGREES
 TOP DOWN VIEW—AS VIEWED ON PCB
 LAND PATTERN RECOMMENDATION IS PER IPC–7351B GENERIC REQUIREMENT FOR SURFACE MOUNT DESIGN AND LAND PATTERN

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 - **Standard**: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - **High Quality**: Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2019 Renesas Electronics Corporation. All rights reserved.