General Description

The IDT8V89704I is a four output Clock Generator with LVPECL outputs. The IDT8V89704I can generate any one of four frequencies from a single crystal or reference clock. The four frequencies are selected from the Function Table (Table 3) by two frequency selection pins. Note the desired programmed frequencies must be used with the corresponding crystal as indicated in Table 3.

Excellent phase noise performance is maintained with IDT’s Fourth Generation FemtoClock® NG PLL technology.

Features

- Fourth Generation FemtoClock® NG PLL technology
- Ideal for 10G EPON ONU and 1G/10G OLT Line Card
- Four LVPECL outputs
- One Reference LVCMOS clock output
- The CLK, nCLK input pair can accept the following differential input levels: LVPECL, LVDS, HCSL
- RMS phase jitter at 156.25MHz (12kHz - 20MHz): 0.239ps (typical)
- Full 2.5V or 3.3V power supply
- -40°C to 85°C ambient operating temperature
- Lead-free (RoHS 6) packaging

Pin Assignment

![Pin Assignment Diagram]

IDT8V89704I
32 Lead VFQFN
5mm x 5mm x 0.925mm package body
3.15mm x 3.15mm EPad
NL Package
Block Diagram

Block Diagram of the IDT8V89704I Data Sheet FEMTOCLOCK

- **Phase Detector**
- **Charge Pump**
- **FemtoClock® NG VCO**
- **Control Logic**
- **XTAL Osc.**
- **XTAL IN** (25MHz)
- **XTAL OUT**
- **CLK**
- **nCLK**
- **CLK_SEL**
- **FSEL 0**
- **FSEL 1**
- **PS (Phase Detector + Charge Pump)**
- **REF_OUT**
- **Q0, nQ0**
- **Q1, nQ1**
- **Q2, nQ2**
- **Q3, nQ3**
Pin Description and Pin Characteristic Tables

Table 1. Pin Descriptions

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 7, 11, 15, 18, 24, 27, 30</td>
<td>VEE</td>
<td>Power</td>
<td>Negative supply pins.</td>
</tr>
<tr>
<td>2, 3</td>
<td>Q0, nQ0</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
<tr>
<td>4, 21</td>
<td>VCCO</td>
<td>Power</td>
<td>Output supply pins.</td>
</tr>
<tr>
<td>5, 6</td>
<td>Q1, nQ1</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
<tr>
<td>8</td>
<td>nc</td>
<td>Unused</td>
<td>No connect.</td>
</tr>
<tr>
<td>9, 10</td>
<td>XTAL_IN, XTAL_OUT</td>
<td>Input</td>
<td>Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output. Crystal frequency is selected from Table 3A.</td>
</tr>
<tr>
<td>12</td>
<td>CLK</td>
<td>Input</td>
<td>Non-inverting differential clock input.</td>
</tr>
<tr>
<td>13</td>
<td>nCLK</td>
<td>Input</td>
<td>Inverting differential clock input. Internal resistor bias to VCC/2.</td>
</tr>
<tr>
<td>14, 17</td>
<td>FSEL0, FSEL1</td>
<td>Input</td>
<td>Frequency select pins. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>16, 31</td>
<td>VCC</td>
<td>Power</td>
<td>Core supply pins.</td>
</tr>
<tr>
<td>19, 20</td>
<td>nQ3, Q3</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
<tr>
<td>22, 23</td>
<td>nQ2, Q2</td>
<td>Output</td>
<td>Differential output pair. LVPECL interface levels.</td>
</tr>
<tr>
<td>25, 26</td>
<td>RESERVED</td>
<td></td>
<td>Reserved.</td>
</tr>
<tr>
<td>28</td>
<td>VCCA</td>
<td>Power</td>
<td>Analog supply pin.</td>
</tr>
<tr>
<td>29</td>
<td>CLK_SEL</td>
<td>Input</td>
<td>Input source control pin. LVCMOS/LVTTL interface levels.</td>
</tr>
<tr>
<td>32</td>
<td>REF_OUT</td>
<td>Output</td>
<td>Single-ended reference output. LVCMOS/LVTTL interface levels.</td>
</tr>
</tbody>
</table>

NOTE: *Pullup and Pulldown* refer to internal input resistors. See Table 2, *Pin Characteristics*, for typical values.

Table 2. Pin Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIN</td>
<td>Input Capacitance</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>CPD</td>
<td>Power Dissipation Capacitance</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>RPULLDOWN</td>
<td>Input Pulldown Resistor</td>
<td></td>
<td>51</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>RPULLUP</td>
<td>Input Pullup Resistor</td>
<td></td>
<td>51</td>
<td></td>
<td></td>
<td>kΩ</td>
</tr>
<tr>
<td>ROUT</td>
<td>Output Impedance</td>
<td>REF_OUT</td>
<td>20</td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
</tbody>
</table>
Function Table

Table 3A. Control Input Function Table

<table>
<thead>
<tr>
<th>Inputs</th>
<th>Outputs</th>
<th>Selected Source</th>
<th>Q0</th>
<th>nQ0</th>
<th>Q1:Q3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLK_EN</td>
<td>CLK_SEL</td>
<td>CLK</td>
<td>Enabled</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>XTAL_IN, XTAL_OUT</td>
<td>Disabled</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>CLK</td>
<td>Enabled</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>XTAL_IN, XTAL_OUT</td>
<td>Enabled</td>
<td>Enabled</td>
<td>Enabled</td>
</tr>
</tbody>
</table>

NOTE: After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock or crystal oscillator edge as shown in Figure 1.

NOTE: In the active mode, the state of the outputs are a function of the CLK input as described in Table 3B.

Frequency Configuration

Table 3B. Frequency Configuration Examples

<table>
<thead>
<tr>
<th>FSEL1</th>
<th>FSEL0</th>
<th>Output Frequency (MHz)</th>
<th>Input Frequency (MHz)</th>
<th>Input Clock Divider (P)</th>
<th>Input Clock Pre-scale (PS)</th>
<th>M Divider</th>
<th>N Divider</th>
<th>VCO Frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>125</td>
<td>25</td>
<td>1</td>
<td>x2</td>
<td>40</td>
<td>16</td>
<td>2000</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>156.25</td>
<td>25</td>
<td>1</td>
<td>x2</td>
<td>50</td>
<td>16</td>
<td>2500</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>250</td>
<td>25</td>
<td>1</td>
<td>x2</td>
<td>40</td>
<td>8</td>
<td>2000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>100</td>
<td>25</td>
<td>1</td>
<td>x2</td>
<td>40</td>
<td>20</td>
<td>2000</td>
</tr>
</tbody>
</table>
Absolute Maximum Ratings

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

<table>
<thead>
<tr>
<th>Item</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage, V_{CC}</td>
<td>3.6V</td>
</tr>
<tr>
<td>Inputs, V_I</td>
<td>-0.5V to V_{CC} + 0.5V, 0V to 2V</td>
</tr>
<tr>
<td>XTAL_IN</td>
<td>-0.5V to V_{CC} + 0.5V</td>
</tr>
<tr>
<td>Other Input</td>
<td>-0.5V to V_{CC} + 0.5V</td>
</tr>
<tr>
<td>Outputs, V_O (LVCMOS)</td>
<td>-0.5V to V_{CC} + 0.5V</td>
</tr>
<tr>
<td>Outputs, I_O (LVPECL)</td>
<td>50mA</td>
</tr>
<tr>
<td>Continuous Current</td>
<td>100mA</td>
</tr>
<tr>
<td>Surge Current</td>
<td></td>
</tr>
<tr>
<td>Package Thermal Impedance, θ_{JA}</td>
<td>33.1°C/W (0 mps)</td>
</tr>
<tr>
<td>Storage Temperature, T_{STG}</td>
<td>-65°C to 150°C</td>
</tr>
</tbody>
</table>

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, $V_{CC} = V_{CCO} = 3.3V \pm 5\%, V_{EE} = 0V, T_A = -40°C$ to $85°C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}</td>
<td>Core Supply Voltage</td>
<td></td>
<td>3.135</td>
<td>3.3</td>
<td>3.465</td>
<td>V</td>
</tr>
<tr>
<td>V_{CCA}</td>
<td>Analog Supply Voltage</td>
<td>$V_{CC} - 0.32$</td>
<td>3.3</td>
<td>V_{CC}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{CCO}</td>
<td>Output Supply Voltage</td>
<td></td>
<td>3.135</td>
<td>3.3</td>
<td>3.465</td>
<td>V</td>
</tr>
<tr>
<td>I_{CCA}</td>
<td>Analog Supply Current</td>
<td></td>
<td>28</td>
<td>32</td>
<td>32</td>
<td>mA</td>
</tr>
<tr>
<td>I_{EE}</td>
<td>Power Supply Current</td>
<td></td>
<td>183</td>
<td>204</td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

Table 4B. Power Supply DC Characteristics, $V_{CC} = V_{CCO} = 2.5V \pm 5\%, V_{EE} = 0V, T_A = -40°C$ to $85°C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CC}</td>
<td>Core Supply Voltage</td>
<td></td>
<td>2.375</td>
<td>2.5</td>
<td>2.625</td>
<td>V</td>
</tr>
<tr>
<td>V_{CCA}</td>
<td>Analog Supply Voltage</td>
<td>$V_{CC} - 0.15$</td>
<td>2.5</td>
<td>V_{CC}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{CCO}</td>
<td>Output Supply Voltage</td>
<td></td>
<td>2.375</td>
<td>2.5</td>
<td>2.625</td>
<td>V</td>
</tr>
<tr>
<td>I_{CCA}</td>
<td>Analog Supply Current</td>
<td></td>
<td>26</td>
<td>30</td>
<td>30</td>
<td>mA</td>
</tr>
<tr>
<td>I_{EE}</td>
<td>Power Supply Current</td>
<td></td>
<td>173</td>
<td>192</td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>
Table 4C. LVCMOS/LVTTL DC Characteristics, $V_{CC} = V_{CCO} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $V_{EE} = 0V$, $T_A = -40^\circ C$ to $85^\circ C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IH}</td>
<td>Input High Voltage</td>
<td>FSEL[1:0], CLK_SEL</td>
<td>$V_{CC} = 3.3V$</td>
<td>2</td>
<td>$V_{CC} + 0.3$</td>
<td>V</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td> </td>
<td>$V_{CC} = 2.5V$</td>
<td>1.7</td>
<td>$V_{CC} + 0.3$</td>
<td>V</td>
</tr>
<tr>
<td>V_{IL}</td>
<td>Input Low Voltage</td>
<td>CLK_SEL</td>
<td>$V_{CC} = 3.3V$</td>
<td>-0.3</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td>$V_{CC} = 2.5V$</td>
<td>-0.3</td>
<td>0.7</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td> </td>
<td> </td>
<td>FSEL[1:0]</td>
<td>$V_{CC} = 3.3V$ or $2.5V$</td>
<td>-0.3</td>
<td>0.5</td>
<td>V</td>
</tr>
<tr>
<td>I_{IH}</td>
<td>Input High Current</td>
<td>FSEL[1:0], CLK_SEL</td>
<td>$V_{CC} = V_{IN} = 3.465V$ or $2.625V$</td>
<td>150</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>I_{IL}</td>
<td>Input Low Current</td>
<td>FSEL[1:0], CLK_SEL</td>
<td>$V_{CC} = 3.465V$ or $2.625V$, $V_{IN} = 0V$</td>
<td>-5</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>V_{OH}</td>
<td>Output High Voltage; NOTE 1</td>
<td>REF_OUT</td>
<td>$V_{CCO} = 3.465V$</td>
<td>2.6</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td> </td>
<td> </td>
<td>REF_OUT</td>
<td>$V_{CCO} = 2.625V$</td>
<td>1.8</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Output Low Voltage; NOTE 1</td>
<td>REF_OUT</td>
<td>$V_{CCO} = 3.465V$ or $2.625V$</td>
<td>0.5</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1: Outputs terminated with 50Ω to $V_{CCO}/2$. In the Parameter Measurement Information Section, see Output Load Test Circuit Diagrams.

Table 4D. Differential DC Characteristics, $V_{CC} = V_{CCO} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $V_{EE} = 0V$, $T_A = -40^\circ C$ to $85^\circ C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{IH}</td>
<td>Input High Current</td>
<td>CLK, nCLK</td>
<td>$V_{CC} = V_{IN} = 3.465V$ or $2.625V$</td>
<td>150</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>I_{IL}</td>
<td>Input Low Current</td>
<td>nCLK</td>
<td>$V_{CC} = 3.465V$ or $2.625V$, $V_{IN} = 0V$</td>
<td>-150</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td> </td>
<td> </td>
<td>CLK</td>
<td>$V_{CC} = 3.465V$ or $2.625V$, $V_{IN} = 0V$</td>
<td>-5</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>V_{PP}</td>
<td>Peak-to-Peak Voltage</td>
<td> </td>
<td> </td>
<td>0.15</td>
<td>1.3</td>
<td>V</td>
</tr>
<tr>
<td>V_{CMR}</td>
<td>Common Mode Input Voltage; NOTE 1</td>
<td> </td>
<td> </td>
<td>V_{EE}</td>
<td>$V_{EE} - 0.85$</td>
<td>V</td>
</tr>
</tbody>
</table>

NOTE 1: Common mode input voltage is at the cross point.

Table 4E. LVPECL DC Characteristics, $V_{CC} = V_{CCO} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $V_{EE} = 0V$, $T_A = -40^\circ C$ to $85^\circ C$

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OH}</td>
<td>Output High Voltage; NOTE 1</td>
<td>$V_{CCO} - 1.1$</td>
<td> </td>
<td>$V_{CCO} - 0.75$</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{OL}</td>
<td>Output Low Voltage; NOTE 1</td>
<td>$V_{CCO} - 2.0$</td>
<td> </td>
<td>$V_{CCO} - 1.6$</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{SWING}</td>
<td>Peak-to-Peak Output Voltage Swing</td>
<td> </td>
<td>0.6</td>
<td>1.0</td>
<td>V</td>
<td></td>
</tr>
</tbody>
</table>

NOTE 1: Outputs termination with 50Ω to $V_{CCO} - 2V$.
Table 5. Crystal Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode of Oscillation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td></td>
<td>25</td>
<td></td>
<td>50</td>
<td>MHz</td>
</tr>
<tr>
<td>Equivalent Series Resistance (ESR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Shunt Capacitance</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>pF</td>
</tr>
</tbody>
</table>

NOTE: Characterized using an 12pF parallel resonant crystal.

AC Electrical Characteristics

Table 6. AC Characteristics, $V_{CC} = V_{CCO} = 3.3V \pm 5\%$ or 2.5V ± 5% $V_{EE} = 0V$, $T_A = -40°C$ to 85°C

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>fDIFF_IN</td>
<td>Differential Input Frequency</td>
<td></td>
<td>25MHz, REF_OUT, Integration Range: 12kHz - 5MHz</td>
<td>0.215</td>
<td>0.305</td>
<td>ps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100MHz, Integration Range: 12kHz - 20MHz</td>
<td>0.239</td>
<td>0.330</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>125MHz, Integration Range: 12kHz - 20MHz</td>
<td>0.230</td>
<td>0.320</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>125MHz, Integration Range: 10kHz - 1MHz</td>
<td>0.190</td>
<td>0.265</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>156.25MHz, Integration Range: 12kHz - 20MHz</td>
<td>0.239</td>
<td>0.325</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>156.25MHz, Integration Range: 10kHz - 1MHz</td>
<td>0.195</td>
<td>0.260</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>250MHz, Integration Range: 12kHz - 20MHz</td>
<td>0.215</td>
<td>0.295</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td>jit(Ø)</td>
<td>RMS Phase Jitter, Random; NOTE 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tsk(o)</td>
<td>Output Skew; NOTE 2, 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tR / tF</td>
<td>Output Rise/Fall Time</td>
<td>20% - 80%</td>
<td>100</td>
<td>400</td>
<td>ps</td>
<td></td>
</tr>
<tr>
<td>odc</td>
<td>Output Duty Cycle</td>
<td></td>
<td>48</td>
<td>52</td>
<td>%</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE: Phase Noise Characterized using 25MHz, 12pF resonant crystal.
NOTE 1: Refer to Phase Noise plot.
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the differential crosspoint.
NOTE 3: These parameters are guaranteed by characterization. Not tested in production.
Typical Phase Noise at 156.25MHz (12k – 20MHz, 3.3V)

![Phase Noise Graph]

- Phase Noise 10.00dB/Ref 0.000dBc/Hz [Smo]
- Center 156.257563 MHz
- Noise Power dBc/Hz
- Frequency Offset (Hz)
- Analysis Range: ±12 kHz
- Band Marker X: 12 kHz
- Start 12 kHz
- Stop 20 MHz
- Center 10.006 MHz
- Span 10.088 MHz

--- Noise ---
- Analysis Range: ±12 kHz
- Noise Power: -132.537 dBc/Hz
- RMS Noise: 221.315 ps
- RMS Jitter: 221.447 fs
- Residual FM: 1.23314 kHz

© 2019 Renesas Electronics Corporation
Parameter Measurement Information

3.3V LVPECL Output Load Test Circuit

![3.3V LVPECL Output Load Test Circuit Diagram]

2.5V LVPECL Output Load Test Circuit

![2.5V LVPECL Output Load Test Circuit Diagram]

3.3V LVCMOS Output Load Test Circuit

![3.3V LVCMOS Output Load Test Circuit Diagram]

2.5V LVCMOS Output Load Test Circuit

![2.5V LVCMOS Output Load Test Circuit Diagram]

Differential Input Levels

![Differential Input Levels Diagram]

RMS Phase Jitter

![RMS Phase Jitter Diagram]
Parameter Measurement Information, continued

Output Skew

Output Duty Cycle/Pulse Width/Period

LVPECL Output Rise/Fall Time
Applications Information

Wiring the Differential Input to Accept Single-Ended Levels

Figure 1 shows how a differential input can be wired to accept single ended levels. The reference voltage \(V_1 = V_{CC}/2 \) is generated by the bias resistors \(R1 \) and \(R2 \). The bypass capacitor \((C1) \) is used to help filter noise on the DC bias. This bias circuit should be located as close to the input pin as possible. The ratio of \(R1 \) and \(R2 \) might need to be adjusted to position the \(V_1 \) in the center of the input voltage swing. For example, if the input clock swing is 2.5V and \(V_{CC} = 3.3V \), \(R1 \) and \(R2 \) value should be adjusted to set \(V_1 \) at 1.25V. The values below are for when both the single ended swing and \(V_{CC} \) are at the same voltage. This configuration requires that the sum of the output impedance of the driver \((R_o) \) and the series resistance \((R_s) \) equals the transmission line impedance. In addition, matched termination at the input will attenuate the signal in half. This can be done in one of two ways. First, \(R3 \) and \(R4 \) in parallel should equal the transmission line impedance. For most 50Ω applications, \(R3 \) and \(R4 \) can be 100Ω. The values of the resistors can be increased to reduce the loading for slower and weaker LVCMOS driver. When using single-ended signaling, the noise rejection benefits of differential signaling are reduced. Even though the differential input can handle full rail LVCMOS signaling, it is recommended that the amplitude be reduced. The datasheet specifies a lower differential amplitude, however this only applies to differential signals. For single-ended applications, the swing can be larger, however \(V_{IL} \) cannot be less than -0.3V and \(V_{IH} \) cannot be more than \(V_{CC} + 0.3V \). Though some of the recommended components might not be used, the pads should be placed in the layout. They can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a differential signal.

![Figure 1. Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels](image-url)
Overdriving the XTAL Interface

The XTAL_IN input can accept a single-ended LVCMOS signal through an AC coupling capacitor. A general interface diagram is shown in Figure 2A. The XTAL_OUT pin can be left floating. The maximum amplitude of the input signal should not exceed 2V and the input edge rate can be as slow as 10ns. This configuration requires that the output impedance of the driver (Ro) plus the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most 50Ω applications, R1 and R2 can be 100Ω. This can also be accomplished by removing R1 and making R2 50Ω. By overdriving the crystal oscillator, the device will be functional, but note, the device performance is guaranteed by using a quartz crystal.

Figure 2A. General Diagram for LVCMOS Driver to XTAL Input Interface

Figure 2B. General Diagram for LVPECL Driver to XTAL Input Interface
3.3V Differential Clock Input Interface

The CLK/nCLK accepts LVDS, LVPECL, HCSL and other differential signals. Both V_{SWING} and V_{OH} must meet the V_{PP} and V_{CMR} input requirements. Figures 3A to 3D show interface examples for the CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements.

Figure 3A. CLK/nCLK Input Driven by a 3.3V LVPECL Driver

Figure 3B. CLK/nCLK Input Driven by a 3.3V LVPECL Driver

Figure 3C. CLK/nCLK Input Driven by a 3.3V HCSL Driver

Figure 3D. CLK/nCLK Input Driven by a 3.3V LVDS Driver
2.5V Differential Clock Input Interface

The CLK /nCLK accepts LVDS, LVPECL, HCSL and other differential signals. Both V_{SWING} and V_{OH} must meet the V_{PP} and V_{CMR} input requirements. *Figures 4A to 4D* show interface examples for the CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are examples only. If the driver is from another vendor, use their termination recommendation. Please consult with the vendor of the driver component to confirm the driver termination requirements.

![Figure 4A. CLK/nCLK Input Driven by a 2.5V LVPECL Driver](image)

![Figure 4B. CLK/nCLK Input Driven by a 2.5V LVPECL Driver](image)

![Figure 4C. CLK/nCLK Input Driven by a 2.5V HCSL Driver](image)

![Figure 4D. CLK/nCLK Input Driven by a 2.5V LVDS Driver](image)
Recommendations for Unused Input and Output Pins

Inputs:

LVCMOS Control Pins
All control pins have internal pulldowns; additional resistance is not required but can be added for additional protection. A 1kΩ resistor can be used.

CLK/nCLK Inputs
For applications not requiring the use of the differential input, both CLK and nCLK can be left floating. Though not required, but for additional protection, a 1kΩ resistor can be tied from CLK to ground.

Crystal Inputs
For applications not requiring the use of the crystal oscillator input, both XTAL_IN and XTAL_OUT can be left floating. Though not required, but for additional protection, a 1kΩ resistor can be tied from XTAL_IN to ground.

Outputs:

LVPECL Outputs
All unused LVPECL outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.

LVCMOS Outputs
The unused LVCMOS output can be left floating. There should be no trace attached.

Termination for 3.3V LVPECL Outputs
The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

The differential outputs are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. Figures 5A and 5B show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

![Figure 5A. 3.3V LVPECL Output Termination](image)

![Figure 5B. 3.3V LVPECL Output Termination](image)
Termination for 2.5V LVPECL Outputs

Figure 6A and Figure 6B show examples of termination for 2.5V LVPECL driver. These terminations are equivalent to terminating 50Ω to \(V_{CCO} - 2V \). For \(V_{CCO} = 2.5V \), the \(V_{CCO} - 2V \) is very close to ground level. The R3 in Figure 6B can be eliminated and the termination is shown in Figure 6C.

![Figure 6A](image)

Figure 6A. 2.5V LVPECL Driver Termination Example

![Figure 6B](image)

Figure 6B. 2.5V LVPECL Driver Termination Example

![Figure 6C](image)

Figure 6C. 2.5V LVPECL Driver Termination Example
VFQFN EPAD Thermal Release Path

In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in Figure 7. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts.

While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as “heat pipes”. The number of vias (i.e. “heat pipes”) are application specific and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a guideline only. For further information, please refer to the Application Note on the Surface Mount Assembly of Amkor’s Thermally/Electrically Enhance Leadframe Base Package, Amkor Technology.

Figure 7. P.C. Assembly for Exposed Pad Thermal Release Path – Side View (drawing not to scale)
Schematic Example

Figure 8 (next page) is an IDT8V89704I application example schematic. The schematic focuses on functional connections and is not configuration specific. Refer to the pin description and functional tables in the datasheet to ensure that the logic control inputs are properly set.

In this example the device is operated at $V_{CC} = V_{CCA} = V_{CCO} = 3.3V$ rather than 2.5V. The CLK, nCLK inputs are provided by a 3.3V LVPECL driver and depicted with a Y-termination rather than the standard four resistor $V_{CC} - 2V$ Thevinin termination for reasons of minimum termination power and layout simplicity. Three examples of LVPECL terminations are shown for the outputs to demonstrate mixing of PECL termination design options. For further options and a more detailed discussion of LVPECL terminations, consult the IDT application note “Termination – LVPECL”.

As with any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The IDT8V89704I provides separate power supply pins to isolate any high switching noise from coupling into the internal PLL.

The schematic indicates components that are to be placed close to the IDT8V89704I. Specifically the 0.1uF V_{CC}, V_{CCA} and V_{CCO} bypass capacitors, the 180 ohm Q3, nQ3 LVPECL bias resistors R11 and R12 and the REF_OUT LVCMOS source termination resistor R1. Similarly the 25MHz crystal and its associated load capacitors should also be close to the device.

In order to achieve the best possible filtering, it is recommended that the placement of the filter components be on the device side of the PCB as close to the power pins as possible. The 0.1uF capacitors in each power pin filter must be placed on the device side. If space is limited, the other components can be on the opposite side of the PCB. Power supply filter recommendations are a general guideline to be used for reducing external noise from coupling into the devices.

The V_{CC} and V_{CCO} filters start to attenuate noise at approximately 10kHz. If a specific frequency noise component is known, such as switching power supplies frequencies, it is recommended that component values be adjusted and if required, additional filtering be added. Additionally, good general design practices for power plane voltage stability suggests adding bulk capacitance in the local area of all devices.
Figure 8. IDT8V89704I Schematic Layout
Power Considerations

This section provides information on power dissipation and junction temperature for the IDT8V89704I. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the IDT8V89704I is the sum of the core power plus the power dissipated due to the load. The following is the power dissipation for \(V_{CC} = 3.3V + 5\% = 3.465V \), which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated due to the load.

- Power (core)\(_{MAX} = V_{CC_MAX} \times I_{EE_MAX} = 3.465V \times 204mA = 706.86mW \)
- Power (LVPECL outputs)\(_{MAX} = 31.55mW/Loaded Output pair \)
- Power (LVPECL output) = 4 \times 31.55mW = 126.2mW

LVCMOS Output

- Output Impedance \(R_{OUT} \) Power Dissipation due to Loading 50\(\Omega \) to \(V_{CCO/2} \)
 Output Current \(I_{OUT} = V_{CCO_MAX} / [2 \times (50\Omega + R_{OUT})] = 3.465V / [2 \times (50\Omega + 20\Omega)] = 24.75mA \)
- Power Dissipation on the \(R_{OUT} \) per LVCMOS output
 \(Power (R_{OUT}) = R_{OUT} \times (I_{OUT})^2 = 20\Omega \times (24.75mA)^2 = 12.251mW \)

Dynamic Power Dissipation at 25MHz

- Power (25MHz) \(= C_{PD} \times Frequency \times (V_{CCO})^2 = 10pF \times 25MHz \times (3.465V)^2 = 3mW \)

Total Power Dissipation

- Total Power
 \(= Power (core) + Power (LVPECL) + Power (R_{OUT}) + Power (25MHz) \)
 \(= 706.86mW + 126.2mW + 12.251mW + 3mW = 848.31mW \)

2. Junction Temperature.

Junction temperature, \(T_j \), is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, \(T_j \), to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

\[T_j = \theta_{JA} \times P_d_total + T_A \]

\(T_j = \) Junction Temperature
\(\theta_{JA} = \) Junction-to-Ambient Thermal Resistance
\(P_d_total = \) Total Device Power Dissipation (example calculation is in section 1 above)

\(T_A = \) Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance \(\theta_{JA} \) must be used. Assuming no air flow and a multi-layer board, the appropriate value is 65.7°C/W per Table 7 below.

Therefore, \(T_j \) for an ambient temperature of 85°C with all outputs switching is:

\(85°C + 848W \times 33.1°C/W = 113.1°C \). This is below the limit of 125°C.

This calculation is only an example. \(T_j \) will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 7. Thermal Resistance \(\theta_{JA} \) for 32 Lead VFQFN, Forced Convection

<table>
<thead>
<tr>
<th>(\theta_{JA}) by Velocity</th>
<th>0</th>
<th>1</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meters per Second</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-Layer PCB, JEDEC Standard Test Boards</td>
<td>33.1°C/W</td>
<td>28.1°C/W</td>
<td>25.4°C/W</td>
</tr>
</tbody>
</table>
3. Calculations and Equations.
The purpose of this section is to calculate the power dissipation for the LVPECL output pair.
LVPECL output driver circuit and termination are shown in Figure 8.

![Figure 9. LVPECL Driver Circuit and Termination](image)

To calculate power dissipation due to the load, use the following equations which assume a 50Ω load, and a termination voltage of \(V_{CC} - 2V \).

- For logic high, \(V_{OUT} = V_{OH_MAX} = V_{CCO_MAX} - 0.75V \)
 \((V_{CCO_MAX} - V_{OH_MAX}) = 0.75V \)
- For logic low, \(V_{OUT} = V_{OL_MAX} = V_{CCO_MAX} - 1.6V \)
 \((V_{CCO_MAX} - V_{OL_MAX}) = 1.6V \)

\(P_{d_H} \) is power dissipation when the output drives high.
\(P_{d_L} \) is the power dissipation when the output drives low.

\[
P_{d_H} = \left[\frac{(V_{OH_MAX} - (V_{CCO_MAX} - 2V))/R_L}{(V_{CCO_MAX} - V_{OH_MAX})} \right] * (V_{CCO_MAX} - V_{OH_MAX}) = \left[\frac{(2V - (V_{CCO_MAX} - V_{OH_MAX}))}{(V_{CCO_MAX} - V_{OH_MAX})} \right] * 0.75V = 18.75mW
\]

\[
P_{d_L} = \left[\frac{(V_{OL_MAX} - (V_{CCO_MAX} - 2V))/R_L}{(V_{CCO_MAX} - V_{OL_MAX})} \right] * (V_{CCO_MAX} - V_{OL_MAX}) = \left[\frac{(2V - (V_{CCO_MAX} - V_{OL_MAX}))}{(V_{CCO_MAX} - V_{OL_MAX})} \right] * 1.6V = 12.80mW
\]

Total Power Dissipation per output pair = \(P_{d_H} + P_{d_L} = 31.55mW \)
Reliability Information

Table 8. θ_{JA} vs. Air Flow Table for a 32 Lead VFQFN

<table>
<thead>
<tr>
<th>Meters per Second</th>
<th>θ_{JA}</th>
<th>0</th>
<th>1</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-Layer PCB, JEDEC Standard Test Boards</td>
<td>θ_{JA}</td>
<td>33.1°C/W</td>
<td>28.1°C/W</td>
<td>25.4°C/W</td>
</tr>
</tbody>
</table>

Transistor Count

The transistor count for IDT8V89704I is: 26,859.
Ordering Information

Table 9. Ordering Information

<table>
<thead>
<tr>
<th>Part/Order Number</th>
<th>Marking</th>
<th>Package</th>
<th>Shipping Packaging</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>8V89704ANLGi</td>
<td>IDT8V89704ANLGi</td>
<td>“Lead-Free” 32 Lead VFQFN</td>
<td>Tray</td>
<td>-40°C to 85°C</td>
</tr>
<tr>
<td>8V89704ANLGi8</td>
<td>IDT8V89704ANLGi</td>
<td>“Lead-Free” 32 Lead VFQFN</td>
<td>Tape & Reel</td>
<td>-40°C to 85°C</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING Datasheets), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas’ products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2020 Renesas Electronics Corporation. All rights reserved.