Features:
- **Low ON resistance:** $r_{DS(ON)} = 5 \Omega$
- **Wide bandwidth:** 1.4GHz (-3dB point)
- **Crosstalk:** 122dB at 50KHz, -80dB at 5MHz, -65dB at 30MHz
- **Off-isolation:** -100dB at 50KHz, -75dB at 5MHz, -45dB at 30MHz
- **Single 5V supply**
- **Bidirectional signal flow**
- **TTL-compatible control inputs**
- **Ultra-low quiescent current:** 3μA
- **Switch turn on time of 6.5ns**
- **Available in QSOP package**

Applications:
- High-speed video signal switching/routing
- Audio signal switching/routing
- Data acquisition
- ATE systems
- Telecomm routing
- Token Ring transceivers
- High-speed networking

Description:
The QS4A101 is a high-performance CMOS analog four-channel SPST switch with individual enables. This device provides a set of four high-speed CMOS switches connecting inputs to outputs. The low ON resistance of the QS4A101 allows inputs to be connected to outputs with low insertion loss and high bandwidth.

The QS4A101, with 1.4GHz bandwidth, is ideal for high-performance video signal switching, audio signal switching, and telecomm routing applications. Low power dissipation makes this device ideal for battery operated and remote instrumentation applications.

The QS4A101 is offered in the QSOP package which has several advantages over conventional packages such as PDIP and SOIC, including:
- Reduced signal delays due to denser component packaging on circuit boards
- Reduced system noise due to less pin inductance

The QS4A101 is characterized for operation at -40°C to +85°C.

Functional Block Diagram

![Diagram](image-url)
PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS(1)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{TERM(2)}$</td>
<td>Supply Voltage to Ground</td>
<td>–0.5 to +7</td>
<td>V</td>
</tr>
<tr>
<td>$V_{TERM(3)}$</td>
<td>DC Switch Voltage V_s</td>
<td>–0.5 to +7</td>
<td>V</td>
</tr>
<tr>
<td>—</td>
<td>Analog Input Voltage</td>
<td>–0.5 to +7</td>
<td>V</td>
</tr>
<tr>
<td>$V_{TERM(3)}$</td>
<td>DC Input Voltage V_{IN}</td>
<td>–0.5 to +7</td>
<td>V</td>
</tr>
<tr>
<td>V_{AC}</td>
<td>AC Input Voltage (pulse width £20ns)</td>
<td>–3</td>
<td>V</td>
</tr>
<tr>
<td>I_{OUT}</td>
<td>DC Output Current</td>
<td>120</td>
<td>mA</td>
</tr>
<tr>
<td>$PMAX$</td>
<td>Maximum Power Dissipation</td>
<td>0.7</td>
<td>W</td>
</tr>
<tr>
<td>$TSTG$</td>
<td>Storage Temperature</td>
<td>–65 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

NOTES:
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Vcc terminals.
3. All terminals except Vcc .

PIN DESCRIPTION

FUNCTION TABLE(1)

<table>
<thead>
<tr>
<th>E</th>
<th>A</th>
<th>B</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>H</td>
<td>H</td>
<td>Connect</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>Connect</td>
</tr>
<tr>
<td>H</td>
<td>X</td>
<td>X</td>
<td>Disconnect</td>
</tr>
</tbody>
</table>

NOTE:
1. H = HIGH Voltage Level
2. L = LOW Voltage Level
3. X = Don't Care

POWER SUPPLY CHARACTERISTICS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{CC}</td>
<td>Supply Current</td>
<td>$V_{CC} = \text{Max.}, V_{IN} = \text{GND or VCC}$</td>
<td>3</td>
<td>μA</td>
</tr>
</tbody>
</table>
DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Industrial: \(TA = -40°C \) to \(+85°C\), \(V_{CC} = 5V \pm 5\%

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter dp:dr</th>
<th>Test Conditions</th>
<th>Min.</th>
<th>Typ.(^{(1)})</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Switch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{IN})</td>
<td>Analog Signal Range(^{(2)})</td>
<td>(V_{CC} = \text{Min.}, V_{IN} = 0V, I_{ON} = 30mA)</td>
<td>-0.5</td>
<td>1</td>
<td>(V_{CC} - 1)</td>
<td>V</td>
</tr>
<tr>
<td>(r_{DS(ON)})</td>
<td>Drain-source ON resistance(^{(2,3)})</td>
<td>(V_{CC} = \text{Min.}, V_{IN} = 0V)</td>
<td>—</td>
<td>5</td>
<td>7</td>
<td>(\Omega)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(V_{CC} = 2.4V, I_{ON} = 15mA)</td>
<td>—</td>
<td>13</td>
<td>17</td>
<td>(\Omega)</td>
</tr>
<tr>
<td>(I_{C(OFF)})</td>
<td>Channel Off Leakage Current</td>
<td>(A = V_{CC}) or (0V), (B = 0V) or (V_{CC}), (V_{OUT})</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>nA</td>
</tr>
<tr>
<td>(I_{C(ON)})</td>
<td>Channel On Leakage Current</td>
<td>(A = B = 0V) (each channel is turned on sequentially)</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>nA</td>
</tr>
<tr>
<td>Digital Control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_{IH})</td>
<td>Input HIGH Voltage</td>
<td>Guaranteed Logic HIGH for Control Pins</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>V</td>
</tr>
<tr>
<td>(V_{IL})</td>
<td>Input LOW Voltage</td>
<td>Guaranteed Logic LOW for Control Pins</td>
<td>—</td>
<td>—</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td>Dynamic Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_{ON(E)})</td>
<td>Enable Turn-On Time</td>
<td>(RL = 1K\Omega, CL = 100pF)</td>
<td>0.5</td>
<td>—</td>
<td>6.5</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(See Switching Time)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_{OFF(E)})</td>
<td>Enable Turn-Off Time</td>
<td>(RL = 1K\Omega, CL = 100pF)</td>
<td>0.5</td>
<td>—</td>
<td>6</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(See Switching Time)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{PD})</td>
<td>Group Delay(^{(2,4a)})</td>
<td>(RL = 1K\Omega, CL = 100pF)</td>
<td>—</td>
<td>—</td>
<td>250</td>
<td>ps</td>
</tr>
<tr>
<td>(f_{3dB})</td>
<td>-3dB Bandwidth</td>
<td>(V_{IN} = 0) to (1V), (1Vp-p, RL = 75\Omega)</td>
<td>—</td>
<td>1.4</td>
<td>—</td>
<td>GHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off-isolation</td>
<td>(V_{IN} = 0) to (1V), (1Vp-p, RL = 75\Omega, f = 5.5MHz)</td>
<td>—</td>
<td>-80</td>
<td>—</td>
</tr>
<tr>
<td>(f_{XTAKE})</td>
<td>Crosstalk</td>
<td>(V_{IN} = 0) to (1V), (1Vp-p, RL = 75\Omega, f = 30MHz)</td>
<td>—</td>
<td>-75</td>
<td>—</td>
<td>dB</td>
</tr>
<tr>
<td>(C_{(OFF)})</td>
<td>Switch Off Capacitance</td>
<td>(E = V_{CC}, V_{IN} = V_{OUT} = 0V)</td>
<td>—</td>
<td>5</td>
<td>—</td>
<td>pF</td>
</tr>
<tr>
<td>(C_{(ON)})</td>
<td>Switch On Capacitance</td>
<td>(E = 0V, V_{IN} = V_{OUT} = 0V)</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>pF</td>
</tr>
<tr>
<td>(Q_{CI})</td>
<td>Charge Injection</td>
<td></td>
<td>—</td>
<td>1.5</td>
<td>—</td>
<td>pC</td>
</tr>
</tbody>
</table>

NOTES:
1. Typical values are at \(V_{CC} = 5.0V, TA = 25°C \).
2. Max value is guaranteed but not production tested.
3. Measured by voltage drop between A and C pins at indicated current through the switch. ON resistance is determined by the lower of the voltages on the two (A, B) pins.
4. The bus switch contributes no group delay other than the RC delay of the ON resistance of the switch and load capacitance. Group delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.
TYPICAL CHARACTERISTICS

NOTES:
1. Crosstalk = 20 log |V O/VS|
2. Off-isolation = 20 log |V O/VS|

Off-isolation and Crosstalk vs. Frequency

VCC = 5V
RL = 75Ω

Off-isolation
Crosstalk

Notes:
1. Crosstalk = 20 log |V O/VS|
2. Off-isolation = 20 log |V O/VS|

Insertion Loss vs. Frequency

NOTE:
1. Insertion Loss = 20 log |V O/VS|
TYPICAL CHARACTERISTICS (CONTINUED)

NOTE:
1. Insertion Loss = 20 log |V_o/V_s|

Insertion Loss vs. Frequency

![Insertion Loss Graph]

On-Resistance vs. V_in

![On-Resistance Graph]

TEST CIRCUITS

![Test Circuit Diagram]

Switching Time

© 2019 Renesas Electronics Corporation
TEST CIRCUITS (CONTINUED)

Insertion Loss

![Insertion Loss Circuit Diagram]

NOTES:
1. Insertion Loss = 20 log |Vout/Vs|
2. All unused pins are grounded.

Crosstalk

![Crosstalk Circuit Diagram]

NOTES:
1. Crosstalk = 20 log |Vout/Vs|
2. All unused pins are grounded.

Off-Isolation

![Off-Isolation Circuit Diagram]

NOTE:
1. Off-isolation = 20 log |Vout/Vs|
ORDERING INFORMATION

QS XXXXX XX X

Device Type Package

Blank

8 Tube or Tray

Tape and Reel

QG Quarter Size Outline Package - QSOP Green

4A101 High Performance CMOS Analog Four-Channel SPST Switch with Individual Enables

DATASHEET DOCUMENT HISTORY

04/13/2014 Pg. 7 Updated the Ordering Information by removing non green package version and Adding Tape and Reel information.
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implants; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2020 Renesas Electronics Corporation. All rights reserved.