Brief Description

The SSC Modular Evaluation Kit provides hardware and software for a very simple and intuitive method of evaluating IDT’s sensor signal conditioner (SSC) ICs. For the evaluation of different SSC ICs, only the IC-specific SSC Evaluation Board and software are needed; the other parts of the evaluation hardware (SSC Communication Board and SSC Sensor Replacement Board) are typically the same.

The SSC Communication Board V4.1* (SSC CB) can provide the power supply for the evaluation hardware and handle the communication with a PC via a USB interface. To prevent malfunctioning or damage, a galvanic isolation to the PC’s USB port is established on board via digital isolators for the information lines and an isolated DC/DC converter for the power line. It is also possible to supply the Communication Board and connected kit boards or user modules by an external power line (12V typical) via the KL1 screw terminal on the SSC CB. It is also possible to supply low voltage devices with a fixed 1.8 or 3.3 VDC internal voltage. Alternatively the connected application could be supplied via the KL2 screw terminal with a voltage of 1.0 to 3.6 VDC.

A USB-UART device transfers all signals to the standardized USB port of the user’s PC. Its UART interface is connected via digital isolators with the UART of an on-board microcontroller that controls all functions of the Evaluation Kit and of the SSC IC to be evaluated. Its software allows direct communication with the SSC IC via several interface options depending on the IC: I2C™†, SPI, ZACwire™ (One-Wire Interface (OWI)), LIN via a discrete level shifter, or SENT. The microcontroller also controls the power lines (5VDC and two lines for 12VDC) by driving several electronic switches. The microcontroller displays the status of communication via LEDs.

An on-board dual header strip enables access to all signal and power lines. This allows a simple signal check; e.g., by a digital oscilloscope, a multimeter, or a connection with user-specific hardware.

Important: Always ensure that there is no power when connecting SSC Evaluation Kit boards.

* This document applies to V4.1 of the SSC CB. See section 7 for earlier SSC CB versions.
† I2C™ is a trademark of NXP.
Important Note

Restrictions in Use
The software and the hardware for the ZSC31xxx / ZSSC3xxx SSC Evaluation Kits are designed for IC evaluation, laboratory setup and module development only.

IDT’s SSC Evaluation Kit hardware and software must not be used for module production or production test setups.

Disclaimer
IDT shall not be liable for any damages arising out of defects resulting from:

(i) delivered hardware and software
(ii) non-observance of instructions contained in this manual, or
(iii) misuse, abuse, use under abnormal conditions or alteration by anyone other than IDT.

To the extent permitted by law, IDT hereby expressly disclaims and user expressly waives any and all warranties, whether express, implied, or statutory, including, without limitation, implied warranties of merchantability and of fitness for a particular purpose, statutory warranty of non-infringement and any other warranty that may arise by reason of usage of trade, custom, or course of dealing.

Contents
1 Electrical Specifications ... 4
2 SSC Communication Board Connections ... 5
3 Software Installation .. 6
 3.1 System Requirements .. 6
 3.2 USB Driver Installation .. 6
4 Circuit Description ... 6
 4.1 USB Power and the Communication Interface ... 6
5 Special Functions of the SSC Communication Board .. 7
 5.1 Trigger .. 7
 5.2 Pull-up Resistor for Support of Data Communication .. 7
 5.3 ADC Channel ADC0 to ADC4 ... 7
 5.4 Digital Channels B4 to B7, D2 to D7, and E2 to E7 ... 8
 5.5 RXD/TXD Interface ... 8
 5.6 LIN Channel ... 8
 5.7 I²C™ Channel ... 8
 5.8 SPI Channel ... 8
 5.9 OWI Channel (ZACwire™) .. 8
 5.10 VPP Pulse Generation ... 8
 5.11 5V Channel .. 8
 5.12 12V Channel .. 9
5.13. Level Shifter Channel .. 9
6 SSC Evaluation Kit Controller Language .. 10
 6.1. SSC Terminal Program .. 10
 6.2. SSC Evaluation Kit Controller Language Commands ... 10
7 SSC Communication Board V4.1 – Schematics .. 12
8 Related Documents .. 15
9 Glossary ... 15
10 Document Revision History .. 16

List of Figures
Figure 2.1 Overview SSC Communication Board.. 5
Figure 6.1 Example Start Sequence with Trigger Configuration.. 11
Figure 7.1 Communication Board Schematic Part 1: USB-Interface Circuit.. 12
Figure 7.2 Communication Board Schematic Part 2: MCU Circuit .. 13
Figure 7.3 Communication Board Schematic Part 3: Level Shifter and 50-pin Connector................................. 14
Electrical Specifications

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SYMBOL</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature range 1)</td>
<td>T(_{AMB})</td>
<td></td>
<td>+10</td>
<td></td>
<td>+45</td>
<td>°C</td>
</tr>
<tr>
<td>External voltage supply input on KL1</td>
<td>V(_{EXT_KL1})</td>
<td></td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>V DC</td>
</tr>
<tr>
<td>External voltage supply input on KL2</td>
<td>V(_{EXT_KL2})</td>
<td></td>
<td>1.0</td>
<td></td>
<td>3.6</td>
<td>V DC</td>
</tr>
<tr>
<td>USB current</td>
<td>I(_{USB})</td>
<td></td>
<td>40</td>
<td></td>
<td>500</td>
<td>mA</td>
</tr>
<tr>
<td>Current capability of 12v supply via DC/DC 2)</td>
<td>I(_{12V_DC/DC})</td>
<td></td>
<td></td>
<td></td>
<td>167</td>
<td>mA</td>
</tr>
<tr>
<td>Power dissipation</td>
<td>P(_{MAX})</td>
<td></td>
<td></td>
<td></td>
<td>1500</td>
<td>mW</td>
</tr>
<tr>
<td>Current at 12P pin on K5/K6</td>
<td>I(_{12P})</td>
<td>With internal supply 3)</td>
<td>40</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With external voltage supply via KL1</td>
<td></td>
<td>150</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Current at KS12V pin on K5/K6</td>
<td>I(_{KS12V})</td>
<td>With internal supply 3)</td>
<td>40</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With external voltage supply via KL1</td>
<td></td>
<td>50</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Current at VPP pin on K5/K6</td>
<td>I(_{VPP})</td>
<td>With internal supply 3)</td>
<td>40</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With external voltage supply via KL1</td>
<td></td>
<td>50</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Current at 5P pin on K5/K6</td>
<td>I(_{5P})</td>
<td>With internal supply 3)</td>
<td>40</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With external voltage supply via KL1</td>
<td></td>
<td>150</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Current at KS5V pin on K5/K6</td>
<td>I(_{KS5V})</td>
<td>With internal supply 3)</td>
<td>100</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With external voltage supply via KL1</td>
<td></td>
<td>500</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Current at VDD-LS pin on K5/K6</td>
<td>I(_{VDD_LS})</td>
<td>With internal supply 3)</td>
<td>50</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With external voltage supply via KL1</td>
<td></td>
<td>150</td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td>Current at KSLS pin on K5/K6</td>
<td>I(_{KSLS})</td>
<td>With internal supply 3)</td>
<td>50</td>
<td></td>
<td></td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With external voltage supply via KL1</td>
<td></td>
<td>150</td>
<td></td>
<td>mA</td>
</tr>
</tbody>
</table>

1. Important: The SSC Communication Board is designed for operation at room temperature only. Do not place this board in temperature chambers during calibration.
2. Total, including SSC Communication Board power supply.
3. Complete power supply via USB. Total amount / sum of current must not exceed specified power dissipation of DC/DC converter.
2 SSC Communication Board Connections

Figure 2.1 Overview SSC Communication Board

- **Jumper K7 - “12P int”**: Selects source for internal 12V domain
 - Internal (DC/DC is used)
 - External (screw terminal)

- **Internal 5V Status LED**: MCU Powered UP LED

- **5V regulator**

- **DC / DC converter**

- **USB Power Status LED**: USB Power LED

- **USB Connector (Type B)**

- **USB Communication LED**: TX - transmit, RX - receive

- **reset button**

- **ISP interface**

- **Status LEDs MCU**: Mod3, Mod1, RUN, GND

- **Screw Terminals KL1 / KL2**: Supports external voltage supply
 - Low voltage screw terminal (1.0 to 3.6V)
 - Internal (1.8V or 3.3V)
 - External (screw terminal)

- **12V screw terminal (8 to 16V)**

- **50 Pin Connector:
 - 5P: GND
 - KS5V: GND
 - 12P: GND
 - KS12V: VDD-LS
 - VPP: KSL
 - SCL: SCL_LS
 - SDA: SDA_LS
 - SS\: SS_LS
 - MOSI: MOSI_LS
 - MISO: MISO_LS
 - SCK: SCK_LS
 - LIN: GND
 - OWI: OWI_LS
 - ADC1: PE7
 - LINw: PE6
 - ADC3: PE5
 - ADC4: PE4
 - RXD: PE3
 - TXD: PE2
 - Tr_D2: GND
 - PD3: PD3_LS
 - PD4: PB7
 - PD5: PB6
 - PD6: PB5
 - PD7: PB4

Note: The in-circuit serial programming (ISP) connector is reserved for IDT use.
3 Software Installation

Note: To install the SSC Evaluation Software, administrator rights are required on the user’s PC.

3.1 System Requirements

- 5x86 compatible PC
- 32MB RAM
- Hard drive with 20MB free space
- Free USB port
- Microsoft Windows® ME / 2000 / XP / Vista / Windows®7 / Windows®8

3.2 USB Driver Installation

Before installing any SSC IC specific IDT software, the USB driver should be installed. The SSC Communication Board V4.1 uses an FTDI device for communication via the USB port. The latest driver can be found on IDT’s website*. If using Windows®7 / Windows®8, the user’s system will automatically download and use the latest approved driver from Microsoft. In this case, ensure that a connection to the internet is established before connecting the SSC Communication Board V4.1 to a free USB port.

The drivers will not affect the operation of any other USB peripherals.

After successful USB driver installation, the software can either use the virtual COM port or the FTDI D2XX.DLL for connection and communication.

4 Circuit Description

4.1 USB Power and the Communication Interface

SSC Evaluation Kits are interfaced to the user’s PC via a Universal Serial Bus (USB). The USB communication is handled by an FT232R USB-to-UART IC. The communication to the on-board microcontroller is handled by a common UART line via digital isolators to provide galvanic isolation.

The USB power line supplies the SSC Communication Board via a galvanic isolated 5-to-12V DC/DC converter circuit. Therefore no additional power supply is required. To fulfill the USB specification for devices with more than 100mA power consumption, the supply input of the subsequent circuit is switched by a MOS transistor, which is controlled by the USB-UART-interface IC. As a result, the power supply of the connected microcontroller and SSC Evaluation Board will be switched on after successful PC USB driver initialization. The maximum load current of the DC-DC converter’s 12VDC output line is 167mA, which is sufficient for supplying the SSC Evaluation Board hardware and some additional external electronic devices. Alternately, it is possible to supply the SSC Evaluation Kit by an external 12VDC power line; e.g., to prevent additional noise caused by the DC-DC converter or to allow more than a 167mA load current at the 12VDC line.

* https://www.IDT.com
The 5VDC supply line is generated by a common LDO linear regulator supplied by the 12VDC line. The microcontroller (type ATmega1281) handles the communication with the IDT SSC IC by using its specific Evaluation Software running on the user's PC. All serial protocols are implemented in the microcontroller's software (I2C™ / SPI / LIN / ZACwire™ (OWI One-Wire Interface)/ SENT), except that for LIN, a discrete LIN level shifter is used. The communication status of the microcontroller is displayed by five LEDs. The microcontroller controls both power lines by electronic switches, so a defined power ON/OFF procedure is practicable. A second switchable 12V power supply labeled as VPP is available because it should be used for generation of the required memory programming voltage.

The IDT SSC Evaluation Board can be connected to the SSC Communication Board via the 50-pin connector. Additionally, all system signals can be checked via the 50-pin header on board. This can also be used for connecting external electronics or the user's own hardware.

5 Special Functions of the SSC Communication Board

5.1. Trigger
Most IDT SSC ICs need a special start procedure to switch into the Command Mode. Therefore a special timing and communication procedure after power-on is required. On the SSC Communication Board, this function is provided by the corresponding supply channels (KS5V, KS12V, VPP(12V), and KSLS). All channels are controlled via electronic switches.

To connect user-specified hardware, a separate trigger signal can be provided at the TRIG pin. This trigger signal will be activated by the trigger command (For details, refer to section 6 and the SSC Communication Board Command Syntax Spreadsheet).

5.2. Pull-up Resistor for Support of Data Communication
To support reliable data communication, some interfaces (ZACwire™ (OWI One-Wire Interface) and LIN) need an additional pull-up resistor, which is included on the SSC Evaluation Board. To eliminate any parasitics caused by this pull-up resistor on the power supply of the SSC IC and data output pin for the selected SSC IC interface, the pull up resistor must be disconnected from the circuit during the start-up phase. This function is supported by the switchable pin Tr_D2. The ZACwire™, OneWire™, and LIN protocol manipulate the signal on Tr_D2 automatically. For user evaluation boards, connect the pull-up resistor or an external pull-up source to Tr_D2.

As an alternative, the SSC Communication Board V4.1 provides an internal 4.7k pull-up for ZACwire™ and OneWire™ interface. By default this pull-up will not be used for communication. The pull-up can be enabled by a special command. Refer to section 6 for general information on commands and the SSC Communication Board Command Syntax Spreadsheet for a detailed command description.

5.3. ADC Channel ADC0 to ADC4
The SSC Communication Board provides five ADC channels: ADC0 to ADC4. The ADC0 channel is labeled “OWI” (ZACwire™); in OWI mode, the ADC0 channel is not available. The ADC channels have a resolution of 10-bits. To use these channels, refer to the SSC Communication Board command descriptions that are given in the SSC Communication Board Command Syntax Spreadsheet.
5.4. Digital Channels B4 to B7, D2 to D7, and E2 to E7
The SSC Communication Board provides several bidirectional digital channels B4 to B7, D2 to D7, and E2 to E7. The D2 channel is not available during ZACwire™ (i.e., OWI, digital One-Wire Interface) and LIN communication (reserved for pull-up switching as described in section 5.2). The output channels have tri-state functionality. To use these channels, refer to the SSC Communication Board command descriptions in the SSC Communication Board Command Syntax Spreadsheet.

5.5. RXD/TXD Interface
The RXD and TXD pins available on the SSC Communication Board’s 50-pin connector (K5/K6) provide the serial protocol that is used for communication between the USB serial connector and the microcontroller.

5.6. LIN Channel
The LIN channel provides a 12V LIN-complaint signal to connect to LIN-compliant devices (LIN specifications 1.3, 2.0, and 2.1). Discrete circuitry converts the 5V microcontroller signal to the 12V LIN level and vice versa. To use this channel, refer to the SSC Communication Board command descriptions in the SSC Communication Board Command Syntax Spreadsheet.

5.7. I²C™ Channel
The I²C™ communication protocol is provided at the SCL (clock) and SDA (serial data) pins. To use this channel, refer to the SSC Communication Board command descriptions in the SSC Communication Board Command Syntax Spreadsheet. On the board, there are pull-up resistors of 4.7kΩ each, which are connected to the switched KS5V power line.

5.8. SPI Channel
The SPI communication protocol is provided at the MOSI (Master Out Slave In), MISO (Master In Slave Out), and SCK (Clock) pins. To use this channel, refer to the SSC Communication Board command descriptions in the SSC Communication Board Command Syntax Spreadsheet.

5.9. OWI Channel (ZACwire™)
The ZACwire™ (i.e., OWI, digital One-Wire Interface) communication protocol is provided at the OWI pin. To use this channel, refer to the SSC Communication Board command descriptions that are given in the SSC Communication Board Command Syntax Spreadsheet.

5.10. VPP Pulse Generation
At the VPP pin, a second 12V power supply can be provided that is intended to be used for a special EEPROM programming pulse generation. However, this VPP pin can also be used for any other 12V purpose. To use this pin, refer to the SSC Communication Board command descriptions in the SSC Communication Board Command Syntax Spreadsheet.

5.11. 5V Channel
At the 5P pin, a stabilized voltage of 5VDC is available to supply external circuits. The KS5V channel provides the same voltage, controlled by the microcontroller via an electronic switch to provide special IC start-up scenarios. To use this channel, refer to SSC Communication Board command descriptions in the SSC Communication Board Command Syntax Spreadsheet regarding trigger pulse generation.
5.12. **12V Channel**
At the 12P pin, a stabilized voltage of 12VDC is available to supply external circuits if the kit is supplied via USB. When supplying the kit with an 8 to 16 VDC by an external power supply via screw terminal KL1, this voltage is available at the 12P pin. The KS12V channel provides the same voltage, as controlled by the microcontroller via an electronic switch to provide special IC start-up scenarios. To use this channel, refer to the SSC Communication Board command descriptions in the *SSC Communication Board Command Syntax Spreadsheet.*

5.13. **Level Shifter Channel**
The Communication Board provides also the option to communicate with low voltage devices using a level shifter. The voltage operation range can be set to fixed internal 1.8V or 3.3V or via KL2 to a freely selectable range of 1.0 to 3.6 VDC.

The control signals for the level shifter and the power supply line are given in the *SSC Communication Board Command Syntax Spreadsheet.*

The level shifted signals are labeled with "LS" on the K5 and K6 connectors. At the VDD-LS pin, a stabilized low voltage is available to supply external circuits. The KSLS channel provides the same voltage, controlled by the microcontroller via an electronic switch to provide special IC start-up scenarios.

The I²C™, SPI, ZACwire™ (OWI), and one digital channel (D3) are transferred via level shifter to the low voltage domain. If more than one digital channel will be required by the application the remaining pins of I²C™, SPI, or ZACwire™ (OWI) can also be used.
6 SSC Evaluation Kit Controller Language

The SSC Communication Board contains a microcontroller with an 8-bit wide internal RISC processor. The communication between this microcontroller and the user’s PC is addressed by a serial protocol. The USB-to-serial converter transforms this signal into a USB-complaint data stream. To allow control of the SSC Communication Board with a PC, the USB data is forwarded to a virtual serial interface (virtual COM port) or FTDI D2XX.DLL. This communication is implemented by the USB driver (see section 3.2).

To control the SSC Communication Board, a software interface is necessary. IDT’s Evaluation Kits include software that provides this interface.

Alternately, the user’s software can be used, or for the simplest cases, a terminal program (e.g., HyperTerminal) can communicate using the corresponding virtual COM port via defined commands with the SSC Communication Board hardware. The configuration for this method and for all user software is as follows:

- Baud rate: 19200
- Data bits: 8
- Stop bits: 1
- Parity: none
- Command terminator: <Carriage Return> plus optional <Line Feed> (\r\n)*

6.1. SSC Terminal Program

IDT’s SSC Terminal Program is a basic terminal program adapted to the communication parameters of the SSC Communication Board. The communication procedure for the different software modules is based on this model.

This program is available in a zip file at www.IDT.com/ZSSC3xxx-COMM-BD. First download the zip file and then extract the software. Click on the extracted file to activate the terminal program.

6.2. SSC Evaluation Kit Controller Language Commands

The commands can be classified as READ, WRITE and SPECIAL commands. Every command that is sent to the hardware is answered by an acknowledge plus a “value” or a not-acknowledge plus a corresponding error code. For the typical IDT SSC IC data structure, refer to the corresponding data sheet and/or functional description.

Depending on the type of SSC IC, a special start-up sequence is necessary to switch the IC to the digital communication mode. To handle this sequence, a special trigger command is provided. The trigger values can be selected with a special preparation call. This call configures the channel, which must switch off and on before the first data packet can be sent. The execution of this trigger command can be selected within a subsequent read/write procedure. The switch-off time before a trigger event is executed can also be programmed. The default value is 300ms. The trigger time is related to the command window parameters of each product. Refer to the SSC IC product datasheet for further information.

* SSC CB will interpret CR as the command terminator and will start execution of the command. The string from SSC CB to PC will always be terminated with <CR><LF>.
Table 6.1 Command Example

<table>
<thead>
<tr>
<th>Command description</th>
<th>Command (string)</th>
<th>Command (hex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set the switch-off time to 50ms</td>
<td>T_050</td>
<td>54 5F 30 35 30 0D 0A</td>
</tr>
<tr>
<td>Select trigger channel KS5V with a trigger time 10ms</td>
<td>T01010</td>
<td>54 30 31 30 31 30 0A 0D</td>
</tr>
<tr>
<td>Write to the (\text{I}^{\text{C}}) channel with trigger</td>
<td>IWT7800101</td>
<td>49 57 54 37 38 30 30 31 30 31 0D 0A</td>
</tr>
<tr>
<td>Read a 4 byte value via the (\text{I}^{\text{C}}) port without trigger</td>
<td>ir_78004</td>
<td>69 72 5F 37 38 30 30 34 0D 0A</td>
</tr>
</tbody>
</table>

For a complete command list, refer to the current version of the SSC Communication Board Command Syntax Spreadsheet.

Figure 6.1 illustrates the timing and related trigger signals needed for sending commands to the SSC CB using the example settings of 50ms switch-off time and 10ms trigger time.

Figure 6.1 Example Start Sequence with Trigger Configuration
Figure 7.1 Communication Board Schematic Part 1: USB-Interface Circuit
Figure 7.2 Communication Board Schematic Part 2: MCU Circuit
Figure 7.3 Communication Board Schematic Part 3: Level Shifter and 50-pin Connector
8 Related Documents

<table>
<thead>
<tr>
<th>Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSC Communication Board Command Syntax Spreadsheet *</td>
</tr>
<tr>
<td>SSC Application Note – SSC Evaluation Kit Firmware Update</td>
</tr>
<tr>
<td>SSC Sensor Replacement Board Datasheet</td>
</tr>
<tr>
<td>SSC Evaluation Kit Feature Sheet</td>
</tr>
</tbody>
</table>

Visit www.IDT.com/ZSSC3xxx-COMM-BD or contact your nearest sales office for the latest version of these documents.

Note: For versions of the SSC CB earlier than V4.1, refer to the 1.06 revision of this document.

9 Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td>Analog-to-digital converter</td>
</tr>
<tr>
<td>FTDI</td>
<td>Future Technology Devices International</td>
</tr>
<tr>
<td>I^2C™</td>
<td>A common two-wire-serial bus system</td>
</tr>
<tr>
<td>ISP</td>
<td>In-Circuit Serial Programming</td>
</tr>
<tr>
<td>LDO</td>
<td>Low drop-out</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>LIN</td>
<td>A common one-wire-serial bus system</td>
</tr>
<tr>
<td>LS</td>
<td>Level Shift</td>
</tr>
<tr>
<td>MCU</td>
<td>Microprocessor</td>
</tr>
<tr>
<td>MISO</td>
<td>“Master In Slave Out” signal for the SPI communications interface</td>
</tr>
<tr>
<td>MOSI</td>
<td>“Master Out Slave In” signal for the SPI communications interface</td>
</tr>
<tr>
<td>OWI</td>
<td>One-Wire Interface</td>
</tr>
<tr>
<td>RX</td>
<td>Receive</td>
</tr>
<tr>
<td>SCK</td>
<td>Clock for the SPI communications interface</td>
</tr>
<tr>
<td>SCL</td>
<td>Clock for I^2C™ communication interface</td>
</tr>
<tr>
<td>SDA</td>
<td>Serial data for I^2C™ communication interface</td>
</tr>
<tr>
<td>SPI</td>
<td>A common three-wire-serial bus system</td>
</tr>
</tbody>
</table>

* This document is included in the terminal program zip file that can be downloaded from the IDT website. See section 6 for instructions for accessing the zip file. This spreadsheet is also available upon request.
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS</td>
<td>Sensor signal conditioner</td>
</tr>
<tr>
<td>SSC</td>
<td>Sensor signal conditioner</td>
</tr>
<tr>
<td>TX</td>
<td>Transmit</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
<tr>
<td>ZACwire™</td>
<td>A IDT-specific one-wire-serial bus system on a 5V level.</td>
</tr>
</tbody>
</table>

10 Document Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00</td>
<td>November 12, 2013</td>
<td>First release of document for new revision 4.1 board.</td>
</tr>
<tr>
<td></td>
<td>March 30, 2016</td>
<td>Changed to IDT branding.</td>
</tr>
</tbody>
</table>
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 Standard: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 High Quality: Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or disaster to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note)1 "Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note)2 "Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters
TOYOSU FORERIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks
Renesas and the Renesas logo are Trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.IDT.com/go/support