7. Sensor Module Characteristics #### 7.1 Gas Sensor Module The ZMOD4410 Gas Sensor Module is designed to detect typical TVOC contaminations based on studies and international standards for indoor air quality. Characteristic module parameters are shown in Table 5. The response time for a gas stimulation is always within a few seconds, depending on the TVOC and its concentration. An active or direct airflow onto the sensor module is not necessary since diffusion of ambient gas does not limit the sensor response time. **Important:** The ZMOD4410 is also able to detect safety-relevant gases for indoor air, such as carbon monoxide (CO); however, the sensor is not designed to detect these interferants reliably and therefore it is not approved for use in any safety-critical or life-protecting applications. It must not be used in such applications, and IDT disclaims all liability for any such use. Table 5. Gas Sensor Module Specifications during Operation | Symbol | Parameter | Conditions | Minimum | Typical | Maximum | Unit [a] | |--------|----------------------------------|---|---------|---------|---------|----------| | | Measurement Range | Ethanol in air | 0 | | 1000 | ppm | | | | Eulanoi ili ali | 0 | | 1000000 | ppb | | | IAQ Specified Measurement Range* | Ethanol in air | 160 | | 30000 | ppb | | | Humidity Range | Non-condensing | 0 | | 90 | % RH | | S | Sensitivity over Lifetime | Resistance in air / resistance at 10ppm ethanol | | 15 | | Ω/Ω | | | Repeatability | Variation in sensor signal | | ±10 | | % | | T-90 | Sensor Response Time [b] | Time to change to 90% of end value | | 5 | | S | [[]a] The abbreviation ppm stands for "parts per million," and ppb is an abbreviation for "parts per billion." For example, 1 ppm equals 1000 ppb. ## 7.2 Internal Temperature Sensor **Table 6. Internal Temperature Sensor** | Parameter | Conditions | Minimum | Typical | Maximum | Unit | |------------------------|-----------------------|---------|---------|---------|--------| | Temperature Resolution | Range: -40°C to +65°C | - | 0.0165 | - | °C/LSB | | Tolerance | Without calibration | -5 | _ | 5 | К | [[]b] Response times depend on TVOC gas and concentration. ^{*} Umweltbundesamt, Beurteilung von Innenraumluftkontaminationen mittels Referenz- und Richtwerten, (Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz, 2007). ## 8.4 Environmental Temperature and Humidity Although the sensor module is tested, qualified, and functional in the range of -40°C to +65°C, the best performance according to its calibration is achieved in the temperature range of 0°C to +40°C. Figure 7 shows the module's response during standard operation (Mode 1) to variations in the range from 15% to 65% relative humidity for ethanol concentrations mentioned in section 8.3. Figure 7. Humidity Influence at Three Different VOC Concentrations ## 8.5 Accuracy All IDT gas sensor modules come with electrical and chemical factory calibration with data stored in the module's nonvolatile memory (NVM). Using the software provided by IDT and the calibration coefficients in the NVM will lead to stable measurement of the UBA level discussed in section 8.1.1 with a maximum deviation of 1 category over the module's lifetime. Users who require an absolute measurement with the maximum achievable accuracy are advised to re-calibrate the sensor with a known organic compound. This enables an absolute accuracy of ±15% in standard operation (Mode 1); see Table 10. For some environments, an interference response to siloxanes is of concern; however, IDT's ZMOD4410 has proven to be resistant against siloxanes. A maximum potential life-time exposure has been simulated in all ZMOD4410 operation modes by applying the chemicals D4 (octamethylcyclotetrasiloxane) and D5 (decamethylcyclopentasiloxane) in high concentration for several hundred hours. For more information on test conditions and results, refer to IDT's ZMOD4410 Application Note – TVOC Sensing. Table 10. Typical ZMOD4410 Sensor Module Accuracy Achievable with Calibration | Parameter | Conditions | Minimum | Typical | Maximum | Unit | |-------------------------|-----------------------------|---------|---------|---------|------| | Accuracy | With additional calibration | | ±15 | | % | | Durability to Siloxanes | Change in sensitivity | | ±5 | | % | ## 9. Assembly Restrictions, Operation, Integration Notes and Storage When implementing the ZMOD4410 in electrical circuit boards, it should be understood that a gas sensor module might react to chemicals during the assembly process and to outgassing components, such as resins from the printed circuit board (PCB) assembly. A standard soldering profile can be used to assemble the ZMOD4410 on the user's PCB and should fulfill the IPC/JEDEC J-STD-020C Standard ("Moisture/Reflow Sensitivity Classification for Non-hermetic Solid State Surface Mount Devices"). A typical lead-free reflow solder profile is shown in Figure 8. After assembly, an outgassing of the PCB and electronic components must be considered, especially when operating the sensor module at elevated temperatures. This will ultimately influence the sensor signal and may dominate the air quality reading. A PCB heat treatment before assembling the ZMOD4410 is recommended. After the gas sensor module assembly, no coating, cleaning, or ultrasonic bath should be applied to the PCB. Also, after assembly, IDT recommends cleaning the sensor module by operating it at 450°C for 10 min to remove any contamination of solder vapor. Store the sensor in an antistatic metallic bag with a low VOC background after the sensor module is removed from its original packaging or the assembled PCB is populated. The optimal storage conditions are <1 ppm TVOC, 10°C to 50°C, and humidity levels within 20% to 80%RH. If the sensor is stored outside of these conditions for extended periods of time, the sensor readings can exhibit a temporary offset. The sensor can be reconditioned and brought back to its calibration state by operation for 24 hours to 48 hours in clean air. To operate the ZMOD4410, the software and libraries provided by IDT can be used. For implementing the sensor module in a customer-specific application, detailed information on the programming is available. The ZMOD4410 Programming Manual - Read Me explains documentation, libraries for supported controllers and compilers, code examples in C, and the minimum requirements for the host MCU for an easy integration (see section 12). #### 10. Test and Calibration As a unique feature, all sampled gas sensor modules are fully tested during IDT's final test. The final test parameters in Table 11 are applied for each ZMOD4410. All sensor modules are pre-stabilized in the final test although the user might see a small change in the module's raw signal during an initial warm-up phase during the first operation. The gas sensor module qualification is based on JEDEC (JESD47) and its subsequent standard (JESD22, JESD78 etc.); it has been tested for a lifetime of 5 years. IDT has proven an MOx lifetime of over 15 years in actual continuous operation in conditions without exposures to stressful environments. **Table 11. Final Test Parameters** | Test | Test Object | Parameters | Test Results
Saved in NVM? | |------------|-------------|---|-------------------------------| | Electrical | ASIC | Voltages, current consumption, frequencies, scan pattern | No | | Electrical | Module | Calibration conditions, tracking ID, resistances | Yes | | Gas | Module | Sensitivity parameters (slope and intercept) at stimulation with different gas concentrations | Yes | | Gas | Module | Pre-stabilization | No | #### 11. I2C Interface and Data Transmission Protocol The I2C slave device interface supports various bus speeds: Standard Mode (≤100kHz) and Fast Mode (≤400kHz). By default, the 7-bit slave address for the serial I2C data interface is set to 32_{HEX} . The implemented data transmission protocol is similar to the one used for conventional EEPROM devices. The register to read/write is selected by a register address pointer. This address pointer must be set during an I2C write operation. After transmission of a register, the address pointer is automatically incremented. An increment from the address FF_{HEX} rolls over to 00_{HEX} . For more information on I2C, see Figure 9 for an illustration of the data transmission protocol and Figure 10 for information on bus timing. See Table 12 for I2C bus characteristics. To validate the read/write access it is possible to write random values to registers 0x88 to 0x8B and read them afterwards. After register testing reset the device by disconnecting the power support; otherwise the device may not operate properly. ## Figure 9. I2C Data Transmission Protocol #### **WRITE Access RAM** #### **READ Access NVM and RAM** Figure 10. Bus Timing **Table 12. Bus Timing Characteristic** | Parameter | Symbol | Standard Mode | Fast Mode | Units | |--|--------------------|---------------|-----------|-------| | Maximum SCL clock frequency | f _{SCL} | 100 | 400 | kHz | | Minimum START condition hold time relative to SCL edge | thdsta | 4 | | μs | | Minimum SCL clock low width | tLOW | 4.7 | | μs | | Minimum SCL clock high width | t _{HIGH} | 4 | | μs | | Minimum START condition setup time relative to SCL edge | tsusta | 4.7 | | μs | | Minimum data hold time on SDA relative to SCL edge | t _{HDDAT} | 0 | | μs | | Minimum data setup time on SDA relative to SCL edge | tsudat | 0.1 | 0.1 | μs | | Minimum STOP condition setup time on SCL | tsusто | 4 | | μs | | Minimum bus free time between stop condition and start condition | | 4.7 | | μs | ## 12. Related Websites and Software Visit the ZMOD4410 and ZMOD4410 Evaluation Kit (ZMOD4410-EVK) product pages on IDT's website to download software and the latest version of related documents, such as application notes, white papers, product briefs, and third party reports. Note that some documents require logging in with a free customer account, which can be set up under the "LOG IN" button on <u>www.IDT.com</u>. Some downloads require an additional step to complete a request form that appears when the link is clicked. | Product | Web Page | |--------------|--------------------------| | ZMOD4410 | www.IDT.com/ZMOD4410 | | ZMOD4410-EVK | www.IDT.com/ZMOD4410-EVK | If further support is needed for downloading, contact IDT via the contact information on the last page. # 13. Glossary | Term | Description | |------|---| | ADC | Analog-to-Digital Converter | | CDM | Charged Device Model | | СМ | Common Mode Generator | | НВМ | Human Body Model | | LGA | Land Grid Array | | LV | Low Voltage | | MOx | Metal Oxide | | MSL | Moisture Sensitivity Level | | Mux | Multiplexer | | n.a. | Not Applicable | | NVM | Nonvolatile Memory | | POR | Power-On Reset | | SDA | Serial Data | | SCL | Serial Clock | | SSC | Sensor Signal Conditioner | | TST | Test | | TVOC | Total Volatile Organic Compounds | | UBA | Umweltbundesamt (German Federal Environmental Agency) | # 14. Package Outline Drawings The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is the most current data available. https://www.idt.com/document/psc/12-lga-package-outline-drawing-30-x-30-x-07-mm-body-05-x-10-mm-pitch-lgg12d1 # 15. Ordering Information | Orderable Part Number | Description and Package | MSL Rating | Carrier Type | Temperature | |-----------------------|--|------------|--------------|----------------| | ZMOD4410AI1V | ZMOD4410 Sensor Module, $3.0 \times 3.0 \times 0.7$ mm 12-LGA | 3 | Tray | -40°C to +65°C | | ZMOD4410AI1R | ZMOD4410 Sensor Module, $3.0 \times 3.0 \times 0.7$ mm 12-LGA | 3 | Reel | -40°C to +65°C | | ZMOD4410-EVK-HC | ZMOD4410 Evaluation Kit including the ZMOD4410 Sensor Board, ZMOD4410 HiCom Communication Board (USB Interface), and Micro-USB Cable. (The ZMOD4410 Evaluation Software is available for download free of charge on www.idl.com/zmod4410-evk .) | | | | # **16. Revision History** | Revision Date | Description of Change | |--------------------|--| | July 30, 2019 | MSL rating corrected in the Ordering table. | | May 9, 2019 | Addition of storage conditions. Improved programming description for customer-specific applications. Improved pin description for INT. Addition of lifetime for qualification. Addition of the "Related Website and Software" section. | | March 12, 2019 | Update to add I2C specification. Update figure for humidity influence. Update to add disclaimer for safety-related applications in section 7.1. Minor edits. | | November 2, 2018 | Update with Low Power Operation Method. | | September 24, 2018 | Update for operation methods for trigger/control signal option. Update for power consumption and minor update in electrical characteristics. Update references. | | September 1, 2018 | Initial release. |