Description

The P9221-R-EVK Mass-Market Evaluation Board demonstrates the features and performance of the P9221-R 15W Wireless Power Receiver (R_x). It is intended to evaluate the functionality and performance of P9221-R. The P9221-R-EVK offers the flexibility to program parameters, such as output voltage, over current limit threshold, and external temperature sensing function. It also enables tuning the Foreign Object Detection (FOD) by connecting the center tap of the on-board resistor dividers to each of these pins. The printed circuit board (PCB) has four layers. The P9221-R Evaluation Board is designed to function with the P9242-R Transmitter Evaluation Board, which is ordered separately. It can also be used with the user’s WPC-1.2.2 compliant transmitter.

The high-efficiency, turnkey reference design is supported by comprehensive online, digital resources to significantly expedite design-in effort and enable rapid prototyping. The total active area is optimized to 28 mm x 15 mm.

Features

- P9221-R evaluation board with support for WPC-1.2.2
- Up to 15W output power
- Selectable output voltage: 12V or 9V
- Adjustable over-current limit
- External FOD tuning
- Power transfer LED indicator
- Alignment guide information using the PCB coils
- 4-layer PCB
- Total active area: 420 mm²
- Fully assembled with test points and coil fixture

Kit Contents

- P9221-R-EVK Mass-Market Evaluation Board
Important Notes

Disclaimer

Integrated Device Technology, Inc. and its affiliated companies (herein referred to as “IDT”) shall not be liable for any damages arising out of defects resulting from

(i) delivered hardware or software
(ii) non-observance of instructions contained in this manual and in any other documentation provided to user, or
(iii) misuse, abuse, use under abnormal conditions, or alteration by anyone other than IDT.

TO THE EXTENT PERMITTED BY LAW, IDT HEREBY EXPRESSLY DISCLAIMS AND USER EXPRESSLY WAIVES ANY AND ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, INCLUDING, WITHOUT LIMITATION, IMPLIED WARRANTIES OF MERCHANTABILITY AND OF FITNESS FOR A PARTICULAR PURPOSE, STATUTORY WARRANTY OF NON-INFRINGEMENT, AND ANY OTHER WARRANTY THAT MAY ARISE BY REASON OF USAGE OF TRADE, CUSTOM, OR COURSE OF DEALING.

Restrictions in Use

IDT’s P9221-R-EVK Mass Market Evaluation Board is designed for evaluation purposes only. It must not be used for module production or production test setups.

Contents

1. Setup ..4
 1.1 Required or Recommended User Equipment ...4
 1.2 Kit Hardware Connections ...4

2. Usage Guide ...5
 2.1 Overview of the P9221-R-EVK ..5
 2.2 VOUT (Output Voltage) Modification ...5
 2.3 Alignment Aid – ALIGNX and ALIGNY ...6
 2.4 Adjustment of Over-Current Limit ..8
 2.5 External Temperature Sensing – TS ...9
 2.6 Receiver Coil ...9

3. Schematics, Bill of Materials (BOM), and Board Layout ...10
 3.1 P9221-R Evaluation Board Schematics ...10

4. Bill of Materials (BOM) ..11

5. Board Layout ..12

6. Ordering Information ..15

7. Revision History ...15
List of Figures

Figure 1. Evaluation Kit Connections using the P9242-R Transmitter Evaluation Board ...4
Figure 2. P9221-R V2.1 Evaluation Board Features...5
Figure 3. R33 and R34 PCB Location ..6
Figure 4. Recommended Structure of the X-Y Alignment Coil ...7
Figure 5. R38 and R22 PCB Location ..8
Figure 6. Over-Current Limit vs. ILIM Pin Voltage ...8
Figure 7. Optional External Temperature Sensing by Connecting an RTS Thermistor ..9
Figure 8. Silkscreen – Top of Board ...12
Figure 9. Silkscreen – Bottom of Board ...12
Figure 10. Copper – Top Layer ..13
Figure 11. Copper L2 Layer ...13
Figure 12. Copper L3 Layer ...14
Figure 13. Copper Bottom ...14

List of Tables

Table 1. Setting the Output Voltage ..5
Table 2. Recommend Coil Manufacturer ..9
Table 3. Application Board BOM ..11
1. Setup

1.1 Required or Recommended User Equipment

The following additional lab equipment is required for using the kit:

- P9242-R Transmitter Evaluation Board or any WPC-1.2.2 compliant transmitter.
- Power supply or 12V/2A AC adaptor

1.2 Kit Hardware Connections

Follow these procedures to set up the kit as shown in Figure 1.

1. Set up the P9242-R Evaluation Board (or user transmitter) according to the board’s user manual.
2. Place the P9221-R-EVK on the transmitter (TX) pad with the components facing up as shown in Figure 1.
3. Verify that the green LED is illuminated – coupling has been established.
4. Connect wires to the VOUT and GND test points to measure output voltage and apply a load.

Figure 1. Evaluation Kit Connections using the P9242-R Transmitter Evaluation Board

MathImage: Figure 1. Evaluation Kit Connections using the P9242-R Transmitter Evaluation Board

Green LEDs illuminate when connection has been established
2. Usage Guide

2.1 Overview of the P9221-R-EVK

Figure 2. P9221-R V2.1 Evaluation Board Features

2.2 VOUT (Output Voltage) Modification

The P9221-R output voltage can be set to 9V or 12V by changing the R34 or R33 resistors value; see Table 1. The default output voltage is set to 12V. For applications where the transmitter is capable of delivering only 5W, the P9221-R will automatically switch to 5V to ensure 5W power delivery. The 5W option can be disabled by adding R33.

Table 1. Setting the Output Voltage

<table>
<thead>
<tr>
<th>R34 (kΩ)</th>
<th>R33 (kΩ)</th>
<th>Output Voltage (V)</th>
<th>5V Output option</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Open</td>
<td>12 (Default)</td>
<td>Enable</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>12</td>
<td>Disable</td>
</tr>
<tr>
<td>OPEN</td>
<td>10</td>
<td>9</td>
<td>Enable</td>
</tr>
<tr>
<td>10</td>
<td>3.3</td>
<td>9</td>
<td>Disable</td>
</tr>
</tbody>
</table>
2.3 Alignment Aid – ALIGNX and ALIGNY

The signal magnitude on the P9221-R’s ALIGNX and ALIGNY pins provides directional alignment information by measuring the phase between the input power AC signal and the horizontal (ALIGNX) and vertical (ALIGNY) alignment signals. Once the signal is measured in the analog-to-digital converter, the alignment information is represented by two 8-bit signed numbers, which can be read via the I²C interface from the Align_X and Align_Y registers (see the P9221-R Datasheet).

The difference in the electromotive force (EMF) voltage of the two coils can be represented by the amount of magnetic flux, which depends on the misalignment position of the receiver coil relative to the transmitter coil. With the combination of two symmetrical coils on the vertical (Y) axis and horizontal (X) axis, it is possible to sense alignment in two dimensions as shown in Figure 4. The trace length and width were designed with 452.12mm and 0.254mm respectively for each segment coil on the P9221-R Evaluation Board, which was assembled with the AMOTECH ASC-504060E00-S00 coil as shown in Figure 4.
Figure 4. Recommended Structure of the X-Y Alignment Coil
2.4 Adjustment of Over-Current Limit

The P9221-R includes the programmable current limit feature for protecting the device in the event of an over-current or short-circuit fault condition. If the output current exceeds the programmed threshold, the P9221-R will limit the load current by reducing the output voltage. The current limit should be set to 130% of the maximum output current by setting the voltage on the ILIM pin as shown in Figure 6 by adjusting R22 while keeping R38 as 10kΩ, which is connected to the 1.8V supply. The default value for the over-current limit is set to 1.6A.

Figure 5. R38 and R22 PCB Location

Figure 6. Over-Current Limit vs. ILIM Pin Voltage
2.5 External Temperature Sensing – TS

The P9221-R includes an optional temperature sense input pin, TS, used to monitor a remote temperature, such as for a coil or a battery charger.

The TS pin voltage can be calculated by Equation 1.

\[V_{TS} = V_{DD18} \times \frac{NTC}{R19 + NTC} \]

Equation 1

Where NTC is the thermistor’s resistance and R19 is the pull-up resistor connected to the 1.8V supply voltage on the P9221-R Evaluation Board. The over-temperature shutdown is triggered if the voltage on the TS pin is lower than 0.6V. The RTS is not populated on the P9221-R Evaluation Board.

Figure 7. Optional External Temperature Sensing by Connecting an RTS Thermistor

2.6 Receiver Coil

The following coil is recommended with P9221-R receiver for 15W applications for optimum performance. The recommended vendor has been tested and verified.

Table 2. Recommend Coil Manufacturer

<table>
<thead>
<tr>
<th>Output Power</th>
<th>Vendor</th>
<th>Part number</th>
<th>Inductance at 100kHz</th>
<th>ACR at 20°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>15W</td>
<td>AMOTECH</td>
<td>ASC-504060M22-S00</td>
<td>8.2(\mu)H</td>
<td>220mΩ</td>
</tr>
</tbody>
</table>
3. Schematics, Bill of Materials (BOM), and Board Layout

3.1 P9221-R Evaluation Board Schematics
4. Bill of Materials (BOM)

Table 3. Application Board BOM

<table>
<thead>
<tr>
<th>Item</th>
<th>Reference</th>
<th>Quantity</th>
<th>Value</th>
<th>Description</th>
<th>Part Number</th>
<th>PCB Footprint</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AC2T, VDD5V, VPP18, VOSET, TS, SDA, SCL, RPO, RPO, INT, IILM, GCOM, DEN, ALGY, ALGX, /EN</td>
<td>16</td>
<td>PTH_TP</td>
<td>Test Pad</td>
<td></td>
<td>10MIL_35PAD</td>
</tr>
<tr>
<td>2</td>
<td>AC2, LC</td>
<td>2</td>
<td>NP</td>
<td>Test Point</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C1, C2, C3, C5</td>
<td>4</td>
<td>100nF/50V</td>
<td>CAP CER 0.1UF 50V X5R 0402</td>
<td>GRM155R61H04KE19D</td>
<td>402</td>
</tr>
<tr>
<td>4</td>
<td>C6, C14</td>
<td>2</td>
<td>47nF</td>
<td>CAP CER 0.047UF 50V X7R 0402</td>
<td>C1005X7R1H473K050BB</td>
<td>402</td>
</tr>
<tr>
<td>5</td>
<td>C7, C15</td>
<td>2</td>
<td>NP</td>
<td>CAP CER 0.047UF 50V X7R 0402</td>
<td>C1005X7R1H473K050BB</td>
<td>402</td>
</tr>
<tr>
<td>6</td>
<td>C8, C16</td>
<td>2</td>
<td>15nF</td>
<td>CAP CER 0.015UF 50V X7R 0402</td>
<td>GRM155R71H153KA12J</td>
<td>402</td>
</tr>
<tr>
<td>7</td>
<td>C9</td>
<td>1</td>
<td>3.3nF</td>
<td>CAP CER 3300PF 50V X7R 0402</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>C10, C11, C21, C22, C33</td>
<td>5</td>
<td>10uF</td>
<td>CAP CER 10UF 25V X5R 0603</td>
<td>CL10A106MA8NRNC</td>
<td>603</td>
</tr>
<tr>
<td>9</td>
<td>C12</td>
<td>1</td>
<td>NP</td>
<td>CAP CER 10UF 25V X5R 0603</td>
<td>CL10A106MA8NRNC</td>
<td>603</td>
</tr>
<tr>
<td>10</td>
<td>C18</td>
<td>1</td>
<td>NP</td>
<td>CAP CER 1UF 10V X5R 0402</td>
<td>GRM155R61A105KE15D</td>
<td>402</td>
</tr>
<tr>
<td>11</td>
<td>C20</td>
<td>1</td>
<td>1uF</td>
<td>CAP CER 1UF 10V X5R 0402</td>
<td>GRM155R61A105KE15D</td>
<td>402</td>
</tr>
<tr>
<td>12</td>
<td>C19, C25, C31</td>
<td>3</td>
<td>0.1uF</td>
<td>CAP CER 0.1UF 10V X5R 0201</td>
<td>C0603X5R1A040K030BC</td>
<td>201</td>
</tr>
<tr>
<td>13</td>
<td>C23</td>
<td>1</td>
<td>0.1uF</td>
<td>CAP CER 0.1UF 25V X5R 0201</td>
<td>CL03A104KA3NNNC</td>
<td>201</td>
</tr>
<tr>
<td>14</td>
<td>D1</td>
<td>1</td>
<td>LED</td>
<td>LED GREEN CLEAR 0603 SMD</td>
<td>150060GS75000</td>
<td>0603_diode</td>
</tr>
<tr>
<td>15</td>
<td>D6, D7</td>
<td>2</td>
<td>5.1V</td>
<td>DIODE ZENER 5.1V 100MW 0201</td>
<td>CZRZ5V1B-HF</td>
<td>201</td>
</tr>
<tr>
<td>16</td>
<td>GND1, VRECT, VOUT, VOSNS, GND</td>
<td>5</td>
<td>Test Point</td>
<td></td>
<td></td>
<td>test_pt_sm_135x70</td>
</tr>
<tr>
<td>17</td>
<td>L1</td>
<td>1</td>
<td>RX coil</td>
<td>AMOTECH, Rx Power Coil</td>
<td>ASC-504060M22-S00</td>
<td>10MIL_35PAD</td>
</tr>
<tr>
<td>18</td>
<td>J1</td>
<td>1</td>
<td>NP</td>
<td>HEADER_1X5_0P1PITCH60P42D</td>
<td>68002-205HLF</td>
<td>header_1x5_0p1Pitch60p42d</td>
</tr>
<tr>
<td>19</td>
<td>RTS</td>
<td>1</td>
<td>NP</td>
<td></td>
<td></td>
<td>NTC2</td>
</tr>
<tr>
<td>20</td>
<td>R1, R13, R14</td>
<td>3</td>
<td>5.1k</td>
<td>RES SMD 5.1K OHM 5% 1/16W 0402</td>
<td>MCR01MR75J12</td>
<td>402</td>
</tr>
<tr>
<td>21</td>
<td>R2</td>
<td>1</td>
<td>36</td>
<td>RES SMD 36 OHM 5% 1/2W 0805</td>
<td>ERJ-P06J360V</td>
<td>805</td>
</tr>
<tr>
<td>22</td>
<td>R6</td>
<td>1</td>
<td>NP</td>
<td>RES SMD 0.0OHM 1/10W 0402</td>
<td>ERJ-2GE0R00X</td>
<td>402</td>
</tr>
<tr>
<td>23</td>
<td>R8</td>
<td>1</td>
<td>0</td>
<td>RES SMD 0.0OHM 1/10W 0402</td>
<td>ERJ-2GE0R00X</td>
<td>402</td>
</tr>
<tr>
<td>24</td>
<td>R15, R16</td>
<td>2</td>
<td>10K</td>
<td>RES SMD 10KOHM 1% 1/10W 0603</td>
<td>RC0603FR-0710KL</td>
<td>603</td>
</tr>
<tr>
<td>25</td>
<td>R17, R19, R23, R27, R28, R29, R30, R34, R38, R39</td>
<td>10</td>
<td>10k</td>
<td>RES SMD 10K OHM 5% 1/10W 0402</td>
<td>ERJ-2GE1J03X</td>
<td>402</td>
</tr>
<tr>
<td>26</td>
<td>R18, R22, R33</td>
<td>3</td>
<td>NP</td>
<td>RES SMD 10K OHM 5% 1/10W 0402</td>
<td>ERJ-2GE1J03X</td>
<td>402</td>
</tr>
<tr>
<td>27</td>
<td>R35</td>
<td>1</td>
<td>0</td>
<td>RES SMD 0.0OHM JUMPER 1/10W 0603</td>
<td>MCR03EJP000</td>
<td>603</td>
</tr>
<tr>
<td>28</td>
<td>U1</td>
<td>1</td>
<td>P9221-R</td>
<td>Wireless power receiver</td>
<td>P9221-R</td>
<td>csp52_2p64x3p94_0p4mm</td>
</tr>
<tr>
<td>29</td>
<td>U2</td>
<td>1</td>
<td>NP</td>
<td>IC EEPROM 128KBIT 400KHZ 8TDFN</td>
<td>24AA128T-I/MNY</td>
<td>TDFN08</td>
</tr>
</tbody>
</table>
5. Board Layout

Figure 8. Silkscreen – Top of Board

Figure 9. Silkscreen – Bottom of Board
Figure 10. Copper – Top Layer

Figure 11. Copper L2 Layer
Figure 12. Copper L3 Layer

Figure 13. Copper Bottom
6. Ordering Information

<table>
<thead>
<tr>
<th>Orderable Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P9221-R-EVK</td>
<td>P9221-R-EVK Evaluation Board</td>
</tr>
</tbody>
</table>

7. Revision History

<table>
<thead>
<tr>
<th>Revision Date</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>December 19, 2016</td>
<td>Initial release of document.</td>
</tr>
</tbody>
</table>
IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2020 Renesas Electronics Corporation. All rights reserved.