Description

The P9225-R-EVK Evaluation Kit demonstrates the functionality, features, and performances of the P9225-R 5W Wireless Power Receiver (Rx). The kit includes the P9225-R Mass-Market (MM) EV Board (EVB). The P9225-R converts AC voltage from a coil into a programmable DC voltage used by the load. The P9225-R has integrated protection for itself and the load from being damaged in some fault events including over-current, over-voltage, and over-temperature during power transfer. It also integrates an I2C communication interface and provides an interrupt pin (INT) for an external application processor (AP). The AP can read internal registers via I2C and read the interrupt pin to determine the P9225-R status. P9225-R can automatically detect the Tx and determine whether to operate in WPC or PMA protocol on startup. If in WPC protocol, the P9225-R can be programmed as needed for foreign object detection (FOD).

The P9225-R-EVK demonstrates a high-efficiency, turnkey reference design, and it is supported by comprehensive online digital resources to significantly expedite design-in efforts and enable rapid prototyping while minimizing the bill of materials (BOM). The total active printed circuit board (PCB) area is optimized to 40mm × 16mm.

Features

- WPC-1.2.4 compliant; PMA SR1 compatible
- Support for up to 5W Baseline Power Profile (BPP) power transfer
- Tx-Rx overall efficiency up to 82% (with the P9038-R-EVK, which is sold separately)
- 5V output voltage; also can be programmed in the range of 4.5V to 5.5V in 0.1V steps
- On-chip over-temperature protection
- Dedicated pin for remote temperature monitor
- Board includes an LED indicator for status monitor
- I2C interface and INT pin for communication with AP
- Programmability for FOD tuning

Kit Contents

- P9225-R Mass-Market (MM) EV Board (EVB) including the coil assembly

P9225-R-EVK MM EV Board

Top View

Bottom View
Power Transfer with the P9225-R-EVK on the P9038-R-EVK

- **P9225-R-EVK**
- **P9225-R-EVK Output**
- **Inducing Coil on P9225-R-EVK**
- **J1 Interface to the Application Processor**
- **A11 Coil on P9038-R-EVK**
- **P9038-R-EVK**
- **Micro-USB Input for P9038-R-EVK**
Important Notes

Disclaimer

Integrated Device Technology, Inc. and its affiliated companies (herein referred to as “IDT”) shall not be liable for any damages arising out of defects resulting from

(i) delivered hardware or software
(ii) non-observance of instructions contained in this manual and in any other documentation provided to user, or
(iii) misuse, abuse, use under abnormal conditions, or alteration by anyone other than IDT.

TO THE EXTENT PERMITTED BY LAW, IDT HEREBY EXPRESSLY DISCLAIMS AND USER EXPRESSLY WAIVES ANY AND ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, INCLUDING, WITHOUT LIMITATION, IMPLIED WARRANTIES OF MERCHANTABILITY AND OF FITNESS FOR A PARTICULAR PURPOSE, STATUTORY WARRANTY OF NON-INFRINGEMENT, AND ANY OTHER WARRANTY THAT MAY ARISE BY REASON OF USAGE OF TRADE, CUSTOM, OR COURSE OF DEALING.

Restrictions in Use

IDT’s P9225-R-EVK is designed for evaluation purpose only. It must not be used for module or mass production purposes.

Contents

1. Setup ..5
 1.1 Required or Recommended User Equipment ...5
 1.2 Kit Hardware Connections ..5
2. Usage Guide ..6
 2.1 Overview of the P9225-R EVK ...6
 2.2 VOUT Programming ..7
 2.3 Over Current Limit Programming ..8
 2.4 Remote Temperature Sensing Thermistor ...9
 2.5 Communication Interface ...9
 2.6 Foreign Object Detection (FOD) Tuning ..10
 2.7 End-of-Charge (EOC) ..11
 2.8 Receiving Coil ..11
3. Hardware Information ..12
 3.1 Schematic for P9225-R MM EV Board ...12
 3.2 Bill of Materials (BOM) ..13
 3.3 Board Layout ..14
4. Ordering Information ..15
5. Revision History ...16
List of Figures

Figure 1. Evaluation Kit Connections...5
Figure 2. P9225-R-EVK Features..6
Figure 3. R34 and R33 Location on the PCB ..7
Figure 4. R38 and R22 Location on the PCB ..8
Figure 5. Location for R19 and Connecting Pads for the NTC Thermistor9
Figure 6. Communication Port Pins ..9
Figure 7. RPPG and RPPO Connections ..10
Figure 8. Locations of R27, R28, R29, and R30 on the PCB10
Figure 9. Connection for the EOC Pin ...11
Figure 10. EOC Test Point on Board ...11
Figure 11. Evaluation Board Schematic ...12
Figure 12. Evaluation Board Layout ...14

List of Tables

Table 1. Setting the Output Voltage ...7
Table 2. Setting the Over-Current Limit ..8
Table 3. Coil Information ..11
Table 4. P9225-R MM EV Board BOM ...13
1. Setup

1.1 Required or Recommended User Equipment

The following additional lab equipment is required for using the kit:

- P9038-R Transmitter Evaluation Board or any WPC-1.2.4 or PMA SR1 compliant transmitter.
- 5V DC power source or adapter that supports a type-C socket.

1.2 Kit Hardware Connections

Follow these procedures to set up the kit as shown in Figure 1.

1. Solder wires to the VOUT and GND test points on the P9225-R MM EV Board to allow measuring the output voltage or connect to load.
2. Set up the P9038-R Evaluation Board (or other transmitter board) according to the board’s user manual and apply power.
3. Place the P9225-R MM EV Board at center on the transmitter coil surface with the yellow coil back facing upwards. P9225-R will detect which protocol the transmitter board uses.
4. Verify that the green LEDs on both kits are illuminated, which indicates that power transfer has been established.

Figure 1. Evaluation Kit Connections

Green D1 LED on P9225-R-EVK indicates that the wireless connection has been made.

Solder wire leads to GND and VOUT test points to allow measuring VOUT or to apply load.

Green D3 LED on P9038-R-EVK indicates that the wireless connection has been made.
2. Usage Guide

2.1 Overview of the P9225-R EVK

Figure 2. P9225-R-EVK Features

- Optional remote temperature sensing thermistor RTS
- Footprint for optional EEPROM for debugging purposes
- Application processor programming interface pins from left to right: INT, SCL, SDA, GND, external 5V supply
- Quick test points for common features
- Test points for V_{VRECT}
- R34, R33: Used to set VOUT
- R28, R27: Used to adjust FOD gain
- R38, R22: Used to adjust over-current limit
- R30, R29: Used to adjust FOD offset
2.2 VOUT Programming

The P9225-R output voltage can be set to 4.5V through 5.5V in steps of 0.1V by changing the R34 or R33 resistor values; see Table 1. The default output voltage is set to 5V on the P9225-R-EVK as indicated by bold font in Table 1.

Table 1. Setting the Output Voltage

<table>
<thead>
<tr>
<th>R34</th>
<th>R33</th>
<th>VOUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>10kΩ</td>
<td>Open</td>
<td>4.5V</td>
</tr>
<tr>
<td>10kΩ</td>
<td>49.9kΩ</td>
<td>4.6V</td>
</tr>
<tr>
<td>10kΩ</td>
<td>34kΩ</td>
<td>4.7V</td>
</tr>
<tr>
<td>10kΩ</td>
<td>20kΩ</td>
<td>4.8V</td>
</tr>
<tr>
<td>10kΩ</td>
<td>14.7kΩ</td>
<td>4.9V</td>
</tr>
<tr>
<td>Open</td>
<td>10kΩ</td>
<td>5.0V</td>
</tr>
<tr>
<td>10kΩ</td>
<td>10kΩ</td>
<td>5.1V</td>
</tr>
<tr>
<td>14.7kΩ</td>
<td>10kΩ</td>
<td>5.2V</td>
</tr>
<tr>
<td>20kΩ</td>
<td>10kΩ</td>
<td>5.3V</td>
</tr>
<tr>
<td>34kΩ</td>
<td>10kΩ</td>
<td>5.4V</td>
</tr>
<tr>
<td>49.9kΩ</td>
<td>10kΩ</td>
<td>5.5V</td>
</tr>
</tbody>
</table>

Figure 3. R34 and R33 Location on the PCB
2.3 Over Current Limit Programming

The P9225-R has a programmable current limit for protecting the device in the event of an over-current or short-circuit fault condition. If the output current exceeds the programmed threshold, the P9225-R will limit the load current by reducing the output voltage. Recommendation: Set the current limit to 130% of the maximum output current by setting the voltage on the ILIM pin as shown in Table 2 by adjusting R22 while keeping R38 as 10kΩ, which is connected to the 1.8V supply. The default value for the over-current limit is set to 1.2A on the R9225-R-EVK as indicated by bold font.

Table 2. Setting the Over-Current Limit

<table>
<thead>
<tr>
<th>R38</th>
<th>R22</th>
<th>ILIM Setting for Maximum IOUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>10kΩ</td>
<td>47kΩ</td>
<td>0.8A</td>
</tr>
<tr>
<td>10kΩ</td>
<td>22kΩ</td>
<td>0.9A</td>
</tr>
<tr>
<td>10kΩ</td>
<td>Open</td>
<td>1.0A</td>
</tr>
<tr>
<td>10kΩ</td>
<td>10kΩ</td>
<td>1.1A</td>
</tr>
<tr>
<td>Open</td>
<td>10kΩ</td>
<td>1.2A</td>
</tr>
</tbody>
</table>

Figure 4. R38 and R22 Location on the PCB
2.4 Remote Temperature Sensing Thermistor

The P9225-R includes the TS input pin for optional temperature sensing via an external NTC thermistor, which can be used to monitor a remote temperature, such as for a coil or a battery charger. The over-temperature shutdown is triggered if the voltage on the TS pin is lower than 0.6V. The TS pin voltage can be calculated by Equation 1. Note that the NTC thermistor (RTS) is not populated on the R9225-R-EVK.

\[
V_{TS} = V_{VDD18} \times \frac{NTC}{NTC + R19} \quad \text{Equation 1}
\]

Where NTC is the thermistor’s resistance and R19 is the pull-up resistor connected to the 1.8V supply voltage on the P9225-R-EVK.

Figure 5. Location for R19 and Connecting Pads for the NTC Thermistor

2.5 Communication Interface

P9225-R features an I2C interface circuit and an INT pin to communicate with an external AP. The AP can read the INT pin status or internal registers to determine what action is required.

The INT pin should be pulled up on the AP side to the proper voltage level. No pull-up resistor is included on the P9225-R-EVK. For further details, contact IDT Tech Support: www.IDT.com/go/support.

Figure 6. Communication Port Pins
2.6 Foreign Object Detection (FOD) Tuning

Refer to the P9225-R Datasheet and the datasheet for the transmitter for a full explanation of foreign object detection. The transmitter uses the value sent by the P9225-R in the Received Power Packet (RPP) to determine whether a foreign object has been detected. The RPPG and RPPO pins on the P9225-R allow adjusting the RPP value to adapt the P9225 for various applications. The voltage on the RPPG pin determines the gain adjustment of the RPP value, which can be set by the values of R27 and R28 (see Figure 7). The voltage on the RPPO pin determines the offset adjustment of the RPP value, which can be set by the values of R29 and R30.

Figure 7. RPPG and RPPO Connections

The P9225-R calculates the original received power by multiplying the voltage on the VRECT pin by the coil current, and then it performs initial calibrations to obtain the middle product P_{CAL}. Then the RPP value is computed using Equation 2:

$$RPP = RPPG \times P_{CAL} + RPPO$$

Equation 2
2.7 End-of-Charge (EOC)

When the voltage on the EOC pin is >1.4V, the P9225-R sends an End Power Transfer (EPT) packet (charge complete) to the transmitter, which then terminates the power transfer. The EOC pin is by default pulled to GND through R40.

Figure 9. Connection for the EOC Pin

![Connection for the EOC Pin](image)

Figure 10. EOC Test Point on Board

![EOC Test Point on Board](image)

R40 Pull-Down Resistor on the EOC Pin

2.8 Receiving Coil

The following coil is recommended with the P9225-R receiver for 5W applications for optimum performance. The recommended vendor has been tested and verified. This coil is used for L1 in the P9225-R-EVK.

Table 3. Coil Information

<table>
<thead>
<tr>
<th>Output Power</th>
<th>Vendor</th>
<th>Part Number</th>
<th>Inductance at 100kHz</th>
<th>DCR at 20°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>5W</td>
<td>Sunlord</td>
<td>SWA50R40H09C01BMDIDD</td>
<td>8.3μH±10%</td>
<td>150mΩ ±20%</td>
</tr>
</tbody>
</table>
3. Hardware Information

3.1 Schematic for P9225-R MM EV Board

Figure 11. Evaluation Board Schematic
3.2 Bill of Materials (BOM)

Table 4. P9225-R MM EV Board BOM

Note: See Table 3 for the details for L1.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Quantity</th>
<th>Value</th>
<th>Description</th>
<th>Part Number</th>
<th>PCB Footprint</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1, C2, C3</td>
<td>3</td>
<td>220nF</td>
<td>CAP CER 0.22µF 50V X7R 0603</td>
<td>GRM188R71H224KAC4D</td>
<td>0603</td>
</tr>
<tr>
<td>C5</td>
<td>1</td>
<td>47nF</td>
<td>CAP CER 0.047µF 50V X7R 0402</td>
<td>GRM155R71H473KE14D</td>
<td>0402</td>
</tr>
<tr>
<td>C6, C7, C14, C15</td>
<td>4</td>
<td>47nF</td>
<td>CAP CER 0.047µF 50V X7R 0402</td>
<td>GRM155R71H473KE14D</td>
<td>0402</td>
</tr>
<tr>
<td>C8, C16</td>
<td>2</td>
<td>15nF</td>
<td>CAP CER 0.015µF 50V X7R 0402</td>
<td>GRM155R71H153KA12J</td>
<td>0402</td>
</tr>
<tr>
<td>C9</td>
<td>1</td>
<td>3.3nF</td>
<td>CAP CER 3300PF 50V X7R 0402</td>
<td>GRM155R71H332KA01D</td>
<td>0402</td>
</tr>
<tr>
<td>C10</td>
<td>1</td>
<td>22µF</td>
<td>CAP CER 22µF 16V X5R 0805</td>
<td>CL21A226MOCLRNC</td>
<td>0805</td>
</tr>
<tr>
<td>C18, C20</td>
<td>2</td>
<td>1µF</td>
<td>CAP CER 1µF 10V X5R 0402</td>
<td>GRM155R61A105KE15D</td>
<td>0201</td>
</tr>
<tr>
<td>C19, C31</td>
<td>2</td>
<td>0.1µF</td>
<td>CAP CER 0.1µF 10V X5R 0201</td>
<td>GRM033R61A104ME15D</td>
<td>0201</td>
</tr>
<tr>
<td>C25</td>
<td>0</td>
<td>NP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C21, C22</td>
<td>2</td>
<td>22µF</td>
<td>CAP CER 22µF 25V X5R 0805</td>
<td>CL21A226MAQNNNE</td>
<td>0805</td>
</tr>
<tr>
<td>C23</td>
<td>1</td>
<td>0.1µF</td>
<td>CAP CER 0.1µF 25V X5R 0201</td>
<td>GRM033R61E104KE14D</td>
<td>0201</td>
</tr>
<tr>
<td>D1</td>
<td>1</td>
<td>LED</td>
<td>LED GREEN CLEAR 0603 SMD</td>
<td></td>
<td>0603</td>
</tr>
<tr>
<td>D8</td>
<td>1</td>
<td>1N4148W</td>
<td>DFN 150mA 75V Sgnl Switching</td>
<td>CDSQR4148</td>
<td>0402</td>
</tr>
<tr>
<td>J1</td>
<td>1</td>
<td>I2C</td>
<td>HEADER_1X5_0P1PITCH60P42D</td>
<td></td>
<td>DI</td>
</tr>
<tr>
<td>RTS</td>
<td>0</td>
<td>NP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1</td>
<td>1</td>
<td>5.1kΩ</td>
<td>RES SMD 5.1K OHM 5% 1/16W 0402</td>
<td>MCR01MRTJ512</td>
<td>0402</td>
</tr>
<tr>
<td>R6, R8, R13, R14</td>
<td>0</td>
<td>NP</td>
<td></td>
<td></td>
<td>0402</td>
</tr>
<tr>
<td>R17, R23, R39, R40, R19, R22, R27, R28, R29, R30, R33</td>
<td>11</td>
<td>10kΩ</td>
<td>RES SMD 10kΩ 5% 1/20W 0201</td>
<td>ERJ-1GEJ103C</td>
<td>0201</td>
</tr>
<tr>
<td>R18, R34, R38</td>
<td>0</td>
<td>NP</td>
<td></td>
<td></td>
<td>0201</td>
</tr>
<tr>
<td>U1</td>
<td>1</td>
<td>P9225-R</td>
<td>MP Wireless Power Receiver</td>
<td>P9225-R</td>
<td>52-WLCSP</td>
</tr>
<tr>
<td>U2</td>
<td>0</td>
<td>NP</td>
<td></td>
<td></td>
<td>TDFN08</td>
</tr>
</tbody>
</table>
3.3 Board Layout

Figure 12. Evaluation Board Layout

Top Layer Silk

Bottom Layer Silk

Top Layer

Bottom Layer
4. Ordering Information

<table>
<thead>
<tr>
<th>Orderable Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P9225-R-EVK</td>
<td>P9225-R Mass-Market Evaluation Kit</td>
</tr>
</tbody>
</table>
5. Revision History

<table>
<thead>
<tr>
<th>Revision Date</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 24, 2018</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>
Notice

1. Descriptions of circuits, software, and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades. "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Revised: 4.0.1 November 2017)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.renesas.com/contact

(Rev.4.0.1 November 2017)

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2019 Renesas Electronics Corporation. All rights reserved.