Introduction

The evaluation board is designed to help the customer evaluate the 5P49V5901, the latest addition to the family of programmable devices in IDT’s Timing portfolio. When the board is connected to a PC running IDT Timing Commander™ Software through USB, the device can be configured and programmed to generate frequencies with best-in-class performances.

Board Overview

Use the following diagram to identify: power supply jacks, USB connector, input and output frequency SMA connectors.

Figure 1. Board Overview
OUT0 - This is a buffered output of the input reference clock, singled ended.

Power supply jack, J16 – Connect to 3.3V, 2.5V or 1.8V for the core voltage of the device.

CLKIN_S/CLKINB_S – SMA pair used to monitor the differential input CLIN/CLKINB.

Differential Input clock connector – A differential clock can be connected as a source for the device.

5P49V5901 – the device to be evaluated.

Crystal – On-board crystal, 25MHz. There are two package holders for crystals: one through-hold and a surface-mount (3225) on the bottom layer of the board.

XIN connector – This SMA connector is for single-ended clock input. Please note the full swing of this input is 1.2V maximum.

USB connector – Used this connector to connect with your PC to run IDT Timing Commander Software.

OUT1 /OUT1B – Output 1. It can be a differential pair or two individual single-ended outputs. By default, it’s an LVPECL differential output.

Output voltage selector – 4-way header to select an output voltage. The center pin is the output voltage. Use the jumper to select from 1.8V, 2.5V or 3.3V. VDDO_J is the voltage from J15 (see E).

OUT2/OUT2B – Output 2. It can be a differential pair or two individual single-ended outputs. By default, it’s an LVPECL differential output.

Ground Jack – J17. If J15 and/or J16 is used for power supply, this jack is the power return.

OUT3/OUT3B – Output 3. It can be a differential pair or two individual single-ended outputs. By default, it’s an LVPECL differential output.

Output Voltage Jack – J15. Connect to a voltage of 1.8V, 2.5V or 3.3V for output voltages.

OUT4/OUT4B – Output 4. It can be a differential pair or two individual single-ended outputs. By default, it’s an LVPECL differential output.

Board Power Supply

- **Core Voltages**
 The core voltage includes a digital voltage VDDD and an analog voltage VDDA. Both core voltages can be powered by an external bench power supply or by USB.

Bench Power Supply – To supply VDDD with a bench power supply, connect power to J16. To supply VDDA with a bench power supply, connect power to J15. In the same time, place the jumpers in JP3 and JP5 to connect VDDA_J and VDDD_J, respectively.

USB Power Supply – When the board is connected to a PC through a USB cable, on-board voltage regulators will generate a 3.3V for the device. In this case, place the jumpers in JP3 and JP5 to connect VDDA_REG and VDDD_REG, respectively. See JP5 jumper position for VDDD_REG in the following figure. USB power source is recommended because it's readily available right from your laptop.
Output Clock Voltages

Like VDDA and VDDD having two sources, each output voltage VDDO0–4 is also provided with two sources to choose from: bench power supply or powered from USB. The selection is made by a 4-way header as shown in Figure 3 below. Jumping to VDDO_J will select external power supply (JP15 and JP16 are connected to external power supply); Jumping to 1.8V, 2.5V or 3.3V will select each respective voltage from on-board voltage regulators powered by USB port.

Please note: each output voltage can be individually selected. Use the label on the evaluation board: VDDO_1 for OUT0, VDDO_2 for OUT1, VDDO_3 for OUT2, VDDO_4 for OUT3 and VDDO_5 for OUT4.

Figure 3. Use the jumper to select a voltage for OUT3: 1.8V/2.5V/3.3V is from on-board voltage regulators powered by USB; VDDO_J is from external power supply connecting to JP15 and JP16
Connecting the Board

The board is connected to a PC through a USB connector for configuring and programming the device, as shown in Figure 4 below. The USB interface will also provide +5V power supply to the board, from which on-board voltage regulators generate various voltages for the core as well as for each output.

The board can also be powered by a bench power supply by connecting two banana jacks J15, J16 for output and core voltages, respectively. Please see board power supply section for details.

Note: The USB port only supports USB 2.0; USB 3.0 is not supported at this time.

Figure 4. Connecting the Board with USB Port for Communications with Timing Commander Software
On-Board Crystal

A 25MHz crystal is installed on the board. It can source a reference frequency to the device when CL Kin/CLKINB is not used. The device can reference from either the crystal or an external clock source. Clock source can be selected within GUI software. Other input reference can be supplied to CL Kin/CLKINB (differential) or XIN (LVCMOS with full swing of 1.2V) connectors.

Board Default Frequency Output

When 25MHz crystal is installed, the device will have two default outputs: OUT0 = 25MHz, OUT1 = 100MHz.

Configuration and Setup

Use the following steps to setup the board using I²C and start the configuration of the board.

1. Set SEL pin (pin 8) of dip switch (U2) to "0" to select I²C mode.
2. Connect J18 to a USB port of the PC using the supplied I²C cable.
3. Power up the board.

4. Launch VC5 Timing Commander Software (refer to VC5 Timing Commander User Guide - Getting Started Step 1~7). Following the Getting Started steps in the Timing Commander software, an I²C connection is established between the GUI software and VC5 chip.
5. Load the setting file into the GUI and write the settings to the chip.
6. All intended outputs should be available for measurement.

Board Schematics

Evaluation board schematics are shown on the following pages.
Figure 5. VersaClock 5 Evaluation Board Schematics – Page 1
Figure 7. Evaluation Board Schematics – Page 3
Signal Termination Options

Termination options for OUTPUT1 – 4 in the evaluation board are displayed in Figure 8. The termination circuits are designed to optionally terminate the output clocks in LVPECL, LVDS, LVCMOS and HCSL signal types by populating (or not-populating) some resistors. DC or AC coupling of these outputs are also supported.

Tables 1 – 4, below, tabulates component installations to support LVPECL, HCSL, LVCMOS and LVDS signal types for OUTPUT1 – 4, respectively. Please note that by doing so, the output signals will be measured and terminated by an oscilloscope with a 50Ω internal termination.

Figure 8. Output Termination Options

Table 1. Termination Options for OUTPUT1

<table>
<thead>
<tr>
<th>Signal Type</th>
<th>Series Resistors: R16, R20</th>
<th>180-ohm pull-down: R21, R22</th>
<th>Series Capacitor: C7, C8</th>
<th>Resistor Network: R18, R19, R23, R24</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVPECL</td>
<td>0 Ω</td>
<td>Installed</td>
<td>0.1 μF</td>
<td>Not installed</td>
</tr>
<tr>
<td>HCSL</td>
<td>33 Ω</td>
<td>Not installed</td>
<td>0 Ω</td>
<td>Not installed</td>
</tr>
<tr>
<td>LVCMOS</td>
<td>33 Ω</td>
<td>Not installed</td>
<td>0.1 μF</td>
<td>Not installed</td>
</tr>
<tr>
<td>LVDS</td>
<td>0 Ω</td>
<td>Not installed</td>
<td>0.1 μF</td>
<td>Not installed</td>
</tr>
</tbody>
</table>
Table 2. Termination Options for OUTPUT2

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LVPECL</td>
<td>0 Ω</td>
<td>Installed</td>
<td>0.1 μF</td>
<td>Not installed</td>
</tr>
<tr>
<td>HCSL</td>
<td>33 Ω</td>
<td>Not installed</td>
<td>0 Ω</td>
<td>Not installed</td>
</tr>
<tr>
<td>LVCMOS</td>
<td>33 Ω</td>
<td>Not installed</td>
<td>0.1 μF</td>
<td>Not installed</td>
</tr>
<tr>
<td>LVDS</td>
<td>0 Ω</td>
<td>Not installed</td>
<td>0.1 μF</td>
<td>Not installed</td>
</tr>
</tbody>
</table>

Table 3. Termination Options for OUTPUT3

<table>
<thead>
<tr>
<th>Signal Type</th>
<th>Series Resistors: R39, R44</th>
<th>180-ohm pull-down: R21, R22</th>
<th>Series Capacitor: C12, C14</th>
<th>Resistor Network: R41, R42, R51, R52</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVPECL</td>
<td>0 Ω</td>
<td>Installed</td>
<td>0.1 μF</td>
<td>Not installed</td>
</tr>
<tr>
<td>HCSL</td>
<td>33 Ω</td>
<td>Not installed</td>
<td>0 Ω</td>
<td>Not installed</td>
</tr>
<tr>
<td>LVCMOS</td>
<td>33 Ω</td>
<td>Not installed</td>
<td>0.1 μF</td>
<td>Not installed</td>
</tr>
<tr>
<td>LVDS</td>
<td>0 Ω</td>
<td>Not installed</td>
<td>0.1 μF</td>
<td>Not installed</td>
</tr>
</tbody>
</table>

Table 4. Termination Options for OUTPUT4

<table>
<thead>
<tr>
<th>Signal Type</th>
<th>Series Resistors: R37, R43</th>
<th>180-ohm pull-down: R45, R46</th>
<th>Series Capacitor: C11, C13</th>
<th>Resistor Network: R38, R40, R47, R48</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVPECL</td>
<td>0 Ω</td>
<td>Installed</td>
<td>0.1 μF</td>
<td>Not installed</td>
</tr>
<tr>
<td>HCSL</td>
<td>33 Ω</td>
<td>Not installed</td>
<td>0 Ω</td>
<td>Not installed</td>
</tr>
<tr>
<td>LVCMOS</td>
<td>33 Ω</td>
<td>Not installed</td>
<td>0.1 μF</td>
<td>Not installed</td>
</tr>
<tr>
<td>LVDS</td>
<td>0 Ω</td>
<td>Not installed</td>
<td>0.1 μF</td>
<td>Not installed</td>
</tr>
</tbody>
</table>

As noted, 4-resistor network is not installed in Table-1 – 4 because oscilloscope with internal 50Ω termination is utilized for signal termination and measurement. If an AC-coupled, stand-alone LVPECL output is needed (without oscilloscope connections), the 4-resistor network needs to be installed accordingly.

Table 5. Resistor Network Termination for LVPECL for OUTPUT1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LVPECL</td>
<td>0 Ω</td>
<td>Installed</td>
<td>0.1 μF</td>
<td>R18 = R19 = 125Ω R23 = R24 = 84Ω</td>
</tr>
</tbody>
</table>
Orderable Part Numbers

The following evaluation board part numbers are available for order.

Table 6. Orderable Part Numbers

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVKVC5-5901HCSL</td>
<td>Evaluation board with all outputs terminated as HCSL</td>
</tr>
<tr>
<td>EVKVC55901LPECL</td>
<td>Evaluation board with all outputs terminated as LVPECL</td>
</tr>
<tr>
<td>EVKVC5-5901LVDS</td>
<td>Evaluation board with all outputs terminated as LVDS</td>
</tr>
<tr>
<td>EVKVC55901LCMOS</td>
<td>Evaluation board with all outputs terminated as LVCMOS</td>
</tr>
<tr>
<td>EVKVC5-5901ALL</td>
<td>Evaluation board with one output of each type of signal terminations</td>
</tr>
</tbody>
</table>
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - *Standard*: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - *High Quality*: Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or disaster to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions specified in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.IDT.com/go/support

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2019 Renesas Electronics Corporation. All rights reserved.