NOTICE

RESTRICTIONS:
The IDT SMOD7xx Evaluation Kit and its contents are designed for sensor evaluation only. They are provided “as is.”
The IDT SMOD7xx Evaluation Kit hardware and application software must not be used for module production and production test setups.
IDT and its affiliates shall not be liable for any damages arising out of defects resulting from (i) delivered hardware and software (ii) non-
observance of instructions contained in this document and in any other documentation provided to user, or (iii) misuse, abuse, use under
abnormal conditions or alteration by anyone other than IDT. To the extent permitted by law IDT hereby expressly disclaims and user
expressly waives any and all warranties, whether express, implied or statutory, including, without limitation, implied warranties of
merchantability and of fitness for a particular purpose, statutory warranty of non-infringement and any other warranty that may arise by
reason of usage of trade, custom, or course of dealing.

Important Safety Warning: The SMOD7xx Smart Sensing Module is not intended, recommended, or approved for use
in safety or life protecting applications or in potentially explosive environments. IDT disclaims all liability for such use.
Only trained professional staff should set up and operate the hardware and software.

The metal sensor enclosure can become very hot to the touch when operated at the recommended heater voltage
settings. Avoid direct contact with the sensor when in operation and keep flammable materials away from the SMOD7xx
Smart Sensing Module.

- The SGAS701 sensor is designed only for gas leak detection and measurement of ppm levels of hydrogen.
- The SGAS707 sensor is designed only for measurement of ppm levels of volatile organic chemicals.
- The SGAS711 sensor is designed only for gas leak detection and measurement of ppm levels of flammable gases.

Contents

1. Introduction.. 3
 1.1 Kit Contents.. 3
 1.2 Required or Recommended User Equipment... 3
2. Hardware Description.. 4
 2.1 SMOD7xx Smart Sensing Module... 4
 2.2 SGAS7xx Sensors.. 5
3. Application Software Overview and Installation... 5
 3.1 Application Software Overview... 5
 3.2 Application Software Installation... 6
 3.2.1 SMOD7xx Application Software Installation Process ... 6
4. Hardware Setup... 7
5. SMOD7xx Application Software Operation... 8
 5.1 Graphical Display and Graphical Display Controls... 9
5.2 Module Information
5.3 Heater Information
5.4 Modification of Sensor Operating Parameters
5.5 Save Data to File
5.6 Menu Bar
5.7 Exiting the Application
6. Kit Ordering Information
7. Revision History

List of Figures
Figure 1. SMOD7xx Smart Sensing Module
Figure 2. SMOD7xx Smart Sensing Module with SGAS7xx Sensor
Figure 3. SMOD7xx Evaluation Kit Interconnections
Figure 4. Top-Level GUI Display
Figure 5. Sensor Response Unit Selection
Figure 6. Module Configuration
Figure 7. Operating Parameters Dialog

List of Tables
Table 1. User Computer Requirements
Table 2. SMOD7xx Smart Sensing Module Components
Table 3. Software Installation Process
Table 4. Top-Level GUI Components
Table 5. SMOD2201 Log File Header
Table 6. Heater Information Display
Table 7. Top Menu Bar
1. Introduction

This document describes the SMOD7xx Evaluation Kit hardware and application software, including the application software installation, the setup for the hardware, and application software operation.

This document applies to the following SMOD7xx Smart Sensing Modules, which will be referred to as the SMOD7xx.

- SMOD701 (utilizing the SGAS701 hydrogen sensor)
- SMOD707 (utilizing the SGAS707 VOC sensor)
- SMOD711 (utilizing the SGAS711 flammable gas sensor)

The SGAS701, SGAS707, and SGAS711 sensors will be referred to as the SGAS7xx.

The SMOD7xx Application Software installation and basic operation are covered in sections 3 and 5. The application software is also referred to as the graphical user interface (GUI).

After downloading and installing the SMOD7xx Application Software, connect the kit hardware to the user’s computer as described in section 4.

1.1 Kit Contents

SMOD7xx Evaluation Kits include the following contents. Refer to section 6 for the kit part codes.

- SMOD7xx Smart Sensing Module with an SGAS7xx sensor
- USB cable (type A to type B mini)
- 9VDC wall-mounted power supply (SMOD701 and SMOD711 only)

1.2 Required or Recommended User Equipment

A computer is required to run the software and communicate with the SMOD7xx Module. It must meet the requirements given in Table 1.

Table 1. User Computer Requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System[a]</td>
<td>Windows® 7, Windows® 8.1, or Windows® 10</td>
</tr>
<tr>
<td>Processor</td>
<td>Pentium® 4M/Celeron® 866 MHz (or equivalent) or later (32-bit)</td>
</tr>
<tr>
<td>Free Disk Space</td>
<td>650MB</td>
</tr>
<tr>
<td>RAM</td>
<td>256MB</td>
</tr>
<tr>
<td>Resolution</td>
<td>1024 x 768</td>
</tr>
<tr>
<td>Connector</td>
<td>1 free USB 2.0 port</td>
</tr>
</tbody>
</table>

[a] 32-bit and 64-bit versions supported.
2. Hardware Description

2.1 SMOD7xx Smart Sensing Module

Figure 1 shows the SMOD7xx Smart Sensing Module, and Table 2 describes the components on the module.

Figure 1. SMOD7xx Smart Sensing Module

![SMOD7xx Smart Sensing Module Diagram]

Table 2. SMOD7xx Smart Sensing Module Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>JTAG Interface (J1)</td>
<td>Standard JTAG interface for firmware debugging and flashing</td>
</tr>
<tr>
<td>Power Connector (J2)</td>
<td>9VDC input for SMOD701 and SMOD711 (Note: The external power supply is not required for the SMOD707 and is not included in the SMOD707 Evaluation Kit.)</td>
</tr>
<tr>
<td>USB Interface (J3)</td>
<td>USB 2.0 (full speed) connector enabling communication with an external device</td>
</tr>
<tr>
<td>Power LED</td>
<td>The power LED lights when the SMOD7xx module is connected to a power source via the USB interface or the J2 power connector</td>
</tr>
<tr>
<td>USB Power LED</td>
<td>The USB power LED lights when the SMOD7xx module is connected to the user’s computer via the USB interface</td>
</tr>
<tr>
<td>Sensor Socket</td>
<td>Pin socket for leads from SGAS7xx sensor.</td>
</tr>
</tbody>
</table>
2.2 SGAS7xx Sensors

SMOD7xx Smart Sensing modules are shipped with SGAS7xx sensors inserted into the sensor sockets as shown in Figure 1. Sensors can be removed by pulling straight up on the TO-39 sensor package. The sensor can be inserted by aligning the tab on the sensor with the printed tab on the module, and then applying gentle downward pressure until the sensor pins are fully inserted.

Figure 2. SMOD7xx Smart Sensing Module with SGAS7xx Sensor

3. Application Software Overview and Installation

3.1 Application Software Overview

The SMOD7xx Application Software for the SMOD7xx Evaluation Kit consists of a single PC-compatible application. This application provides a simple means of operating all varieties of IDT’s SMOD7xx Smart Sensing Modules.

The SMOD7xx Application Software is available for download from the IDT website. It is a LabVIEW® executable application that requires the presence of the LabVIEW runtime environment. If this environment is not present on the user’s computer at application installation time, it will be automatically added to the PC as part of the installation process detailed below.

Note: The user must have administrative rights to install the SMOD7xx Application Software on the user’s computer. Before installing the software, ensure that the computer meets the minimum requirements listed in Table 1.

* LabVIEW® is a trademark of National Instruments Corporation.
3.2 Application Software Installation

3.2.1 SMOD7xx Application Software Installation Process

Download the SMOD Evaluation Software zip file from one of the following IDT web pages:

http://www.idt.com/SMOD701KIT
http://www.idt.com/SMOD707KIT
http://www.idt.com/SMOD711KIT

Extract the contents of the zip file to a folder on the installation PC. Then launch setup.exe in the root folder of the extracted files, and follow the on-screen installation instructions. Key steps in the installation are illustrated in Table 3. Because the application is LabVIEW-based, several different LabVIEW runtime environment packages will be installed to the user’s PC to support operation of SMOD7xx Application Software. If the runtime packages were previously installed by another application, or LabVIEW 15 Full Version is installed on the PC, then installation of the runtime environment will be bypassed.

Table 3. Software Installation Process

<table>
<thead>
<tr>
<th>Initial installation screen:</th>
<th>Default installation folders:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>List of components that will be installed:</th>
<th>Final installation screen:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. **Hardware Setup**

Each type of SMOD7xx Smart Sensor Module is factory configured to auto-start upon application of power either from the USB cable or from an external source through power connector J2. The SMOD701 and SMOD711 require external power using the wall-mounted power supply included in the SMOD7xx Evaluation Kit; the SMOD707 can be operated using USB power only. To avoid small power spikes to the sensor heater at power up, apply external power before connecting the USB cable.

Connect the mini-USB cable from connector J3 on the SMOD7xx Smart Sensing Module to an available USB port on the user’s computer. The Windows operating system will detect the presence of the module and install a virtual COM port driver enabling communication between the SMOD7xx Smart Sensing Module and the PC. Successful installation and operation of the driver can be verified through the Module Info indicator in the SMOD7xx Application Software (described in section 5) or at a more fundamental level in the Ports section of the Windows Device Manager.

Figure 3. SMOD7xx Evaluation Kit Interconnections

Note: The power adapter is not included in the SMOD707 Evaluation Kit.
5. SMOD7xx Application Software Operation

The application is launched from the SMOD7xx Application Software shortcut in the Windows Start menu. An example of the initial screen is shown in Figure 4. The GUI components are identified in Figure 4 and summarized in Table 4.

Figure 4. Top-Level GUI Display

![Top-Level GUI Display](image)

Table 4. Top-Level GUI Components

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphical Display</td>
<td>Display showing sensor output versus time</td>
</tr>
<tr>
<td>Graphical Display Controls</td>
<td>Allow alteration of sensor scale and output type for graphical display</td>
</tr>
<tr>
<td>Sensor Output Indicator</td>
<td>Numerical value of latest sensor output</td>
</tr>
<tr>
<td>Module Information</td>
<td>Connection and operating status of the SMOD7xx Module</td>
</tr>
<tr>
<td>Heater Information</td>
<td>Heater drive information</td>
</tr>
<tr>
<td>Operating Parameters</td>
<td>Opens a dialog window allowing setting sensor operating parameters</td>
</tr>
<tr>
<td>Save Data to File</td>
<td>Allows saving of sensor response data to a tab separated text file</td>
</tr>
<tr>
<td>Menu Bar</td>
<td>Access to additional functionalities and alternative methods for operating the GUI</td>
</tr>
<tr>
<td>Exit Application</td>
<td>Exit the software</td>
</tr>
</tbody>
</table>
5.1 Graphical Display and Graphical Display Controls

The graphical display shows the sensor output as a graph of sensor response versus time (in seconds). A display of the sensor output proceeds whenever an SMOD7xx is connected to the computer and stops when the SMOD7xx is disconnected. Right-clicking on the mouse cursor within the display area displays a context menu that allows setting the charting options as well as clearing the display. The “Vertical Scale” control section (see the example in Figure 5 using the SMOD707 VOC Smart Sensor) contains controls for manipulating the scale and output type for the vertical axis of the graphical display. The “Linear/Log” button toggles the vertical scale of the graphical display between linear and logarithmic output. The sensor response defaults to units of resistance (in ohms), but can be changed to gas concentration or other units if multiple output types are enabled during factory configuration of the SMOD7xx. If available, the sensor response units can be changed using the “radio buttons” below the “Linear/Log” button as illustrated in Figure 5 for the SMOD707 VOC Smart Sensor.

Figure 5. Sensor Response Unit Selection

![Sensor Response Unit Selection](image)

5.2 Module Information

The “Module Info” section shows the connection state of the application. If no SMOD7xx is attached to the computer, the indicator will read “No SMOD Attached.” When an SMOD7xx is attached, the indicator will change to SMOD7xx, where xx is 01, 07, or 11, indicating the type of SMOD7xx module attached as shown in Figure 4. If the application is unable to read from the SMOD7xx, the display will show “read error.” Detection of connected SMOD7xx devices is automatic, and devices can be disconnected/reconnected repeatedly while the program is executing. Additional module information can be obtained by activating the “more info…” button, which displays the information window shown in Figure 6. A description of the individual items in this window is given in Table 5.

Figure 6. Module Configuration

![Module Configuration](image)
Table 5. SMOD2201 Log File Header

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor name</td>
<td>SMOD7xx type (SMOD701, SMOD707, or SMOD711).</td>
</tr>
<tr>
<td>Heater Control</td>
<td>The heater control type: CONSTANT CURRENT, CONSTANT VOLTAGE, CONSTANT POWER, or CONSTANT RESISTANCE.</td>
</tr>
<tr>
<td>Data Rate (s)</td>
<td>Length of time in seconds between data points.</td>
</tr>
<tr>
<td>Port</td>
<td>The COM port assigned by Windows to the USB virtual COM port.</td>
</tr>
<tr>
<td>Baud Rate</td>
<td>The baud rate used by the virtual COM port. SMOD7xx modules are assigned a fixed baud rate of 9600.</td>
</tr>
<tr>
<td>Firmware Version</td>
<td>The version number (major.minor.patch) of the SMOD7xx firmware.</td>
</tr>
<tr>
<td>Heater Setpoint (V)</td>
<td>The target heater set-point. The units change according to the heater control method; e.g. for CONSTANT POWER, the units will change from volts to mW.</td>
</tr>
<tr>
<td>ADC (% period)</td>
<td>The point within the data rate period (as a percentage) at which the sensor response is measured by the analog-to-digital converter (ADC).</td>
</tr>
</tbody>
</table>

5.3 Heater Information

The heater control drive value is shown in the middle left portion of the display (see Figure 4). The value will correspond to the drive method as shown in Table 6. SMOD7xx units are shipped with the drive control set to “Constant Voltage.” When no sensor is inserted in the sensor socket, the “Heater Voltage” field will read approximately 4.5V (if USB powered) or 8.5V (if powered by J2) at any drive setting, indicating that the heater control circuitry is trying to drive current through the open circuit heater.

Table 6. Heater Information Display

<table>
<thead>
<tr>
<th>Drive Type</th>
<th>Displayed Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant Current</td>
<td>Actual (measured) heater voltage in volts to two decimal places</td>
</tr>
<tr>
<td>Constant Voltage</td>
<td>Actual (measured) heater voltage in volts to two decimal places</td>
</tr>
<tr>
<td>Constant Power</td>
<td>Actual (calculated from voltage) heater power in mW to one decimal place</td>
</tr>
<tr>
<td>Constant Resistance</td>
<td>Actual (calculated from voltage) heater resistance in ohms to one decimal place</td>
</tr>
</tbody>
</table>

5.4 Modification of Sensor Operating Parameters

Activating the “Operating Parameters…” button displays a dialog window for selecting the heater voltage and data rate, as shown in Figure 7. The heater operating point can be set to values between 0 and 7.5V, defaulting to 5.4V, 3.5V, and 7.0V for the SMOD701, SMOD707, and SMOD711 respectively. The period (data collection rate) can be set to values between 1 and 60 (one point per second to one point per 60 seconds). Clicking “OK” causes the entered values to be programmed into the SMOD7xx Smart Sensor, and clicking “Cancel” causes any changes to be ignored.
5.5 **Save Data to File**

The “Save File” button causes data to be saved to a tab separated file, one line per data point. The values in each line correspond to a time stamp, the actual heater voltage, and the sensor resistance. A valid filename must be entered into the “Output Path” entry field in order to save data to a file. If the “Save File” button is clicked with a blank or invalid filename, a warning will appear and no data will be saved. If the file does not exist, a new data file will be created. If the file exists, the new data will be appended to the existing file.

5.6 **Menu Bar**

The menu bar enables execution of less common tasks associated with the *SMOD7xx Application Software*. Operations available from the menu bar are described below for each menu item.

Table 7. Top Menu Bar

<table>
<thead>
<tr>
<th>Menu</th>
<th>Menu Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>File</td>
<td>Save File</td>
<td>Provides an alternative means of activating the “Save File” button on the GUI.</td>
</tr>
<tr>
<td></td>
<td>Exit</td>
<td>Exits the application.</td>
</tr>
<tr>
<td>Configure</td>
<td>Info…</td>
<td>Provides an alternative means of activating the “more info…” button in the GUI.</td>
</tr>
<tr>
<td></td>
<td>Calibration…</td>
<td>Opens the dialog window shown below, which displays the gas sensor calibration constants presently contained within SMOD7xx non-volatile memory. Values are factory-set but can be altered and saved to the SMOD7xx using with this dialog. SMOD7xx devices might not be factory-configured for calibrated output; if this is the case, then this menu item and the associated dialog window will be disabled.</td>
</tr>
<tr>
<td>Operate</td>
<td>Parameters…</td>
<td>Provides an alternative means of activating the “Operating Parameters…” button in the GUI.</td>
</tr>
<tr>
<td>About</td>
<td>–</td>
<td>Displays an information window showing the version number and copyright information for the application.</td>
</tr>
</tbody>
</table>
5.7 Exiting the Application
The application can be terminated by activating the exit application button in the GUI (see Figure 4), or by selecting “File” > “Exit” from the top menu bar.

6. Kit Ordering Information

<table>
<thead>
<tr>
<th>Orderable Part Number</th>
<th>Description and Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMOD701KITV1</td>
<td>SMOD701 Evaluation Kit, including the SMOD701 Smart Sensing Module, mini-USB cable, and wall-mounted 9V power supply; the kit software is available for download as described in section 3.</td>
</tr>
<tr>
<td>SMOD707KITV1</td>
<td>SMOD707 Evaluation Kit, including the SMOD707 Smart Sensing Module and mini-USB cable; the kit software is available for download as described in section 3.</td>
</tr>
<tr>
<td>SMOD711KITV1</td>
<td>SMOD711 Evaluation Kit, including the SMOD711 Smart Sensing Module, mini-USB cable, and wall-mounted 9V power supply; the kit software is available for download as described in in section 3.</td>
</tr>
</tbody>
</table>

7. Revision History

<table>
<thead>
<tr>
<th>Revision Date</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 12, 2017</td>
<td>First release.</td>
</tr>
</tbody>
</table>
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 * "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 * "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.IDT.com/go/support

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2019 Renesas Electronics Corporation. All rights reserved.