Introduction

The VersaClock® 5 - 5P49V59xx family programmer board is made to ease the programming of blank 5P49V59xx parts. With the on-board USB interface, IDT Timing Commander™ GUI can be used to communicate with the VersaClock® 5 family of devices in the socket for configuration and programming. The family of VersaClock 5 devices includes the following part numbers: 5P49V5901, 5P49V5913, 5P49V5914, 5P49V5923, 5P49V5925, 5P49V5927, 5P49V5929, 5P49V5933, 5P49V5935.

Board Overview

As shown in the following diagram, all necessary components and connections are available to test the functionality of the configuration after the device is programmed. By installing R14 on the back of the board with a 100KΩ resistor, the device will be powering up in hardware select mode, in which SEL1 and SEL0 pins can be used to switch among 4 configurations that the device supports.

Figure 1. Programmer Board Overview (socket closed)

Placing a Blank Chip in the Socket

When socket is open, identify the position of Pin 1 as shown in Figure 2. Align the dot of the blank device with the round dent engraved on the corner of the socket as pointed. After placing the blank device, secure the socket cover.
Programming Steps

1. **Place a blank part in the socket**—Refer to Figure 2 above. With socket opened, identify pin 1 position and place a blank part accordingly. Close the socket and secure the socket lid.

2. **Plug the board into USB port**—USB port provides power to the board as well as a communication channel between GUI and the device.

3. **Start Timing Commander GUI**—Launch the Timing Commander GUI software. Load the proper personality file.

4. **Start a new settings file** or open a pre-optimized configuration file.

5. **Connect to the board**—Click on the chip symbol on the top-right corner of the GUI window, as shown in Figure 3 below (left). A rectangular area in green will display (right).

6. **Execute “Write All” command**—Double check the setting file that is open in GUI window and make sure everything is correct. Then click on “Write-All” symbol in the green area (See Figure 3 above, right). This is a step that must be executed before OTP programming of the device.

7. **Click on OTP button in the GUI**—On lower left portion of GUI window, there is a button called OTP (Figure 4: left). Click this button to open OTP Programming dialogue window (Figure 4: right).
In OTP dialogue window, there is a box in front of each configuration. Check the box for the configuration(s) that you want to program. One or more configurations can be selected at the same time. If All is checked, all 4 configuration will be programmed.

After intended configuration(s) is selected, then programming the device is only one click away – click on the blue “Burn” button will launch the programming. If one or more of the target configurations have already been burned, there will be a warning.

Once done, a completion message will pop out which indicates a successful programming:

Important: Burning irreversibly converts ones to zeroes; it is possible to go back and burn an unburned bit or bits to zero; zeroes cannot be restored to ones. This allows revision of a burn under limited circumstances.

Loading from OTP

For loading one or more configurations from a burned part into the VC5 GUI (“load OTP”) follow these steps: Before reading back cycle the power on the part and set the input crystal and/or clock frequencies in the GUI to those in the original configuration(s). This must be done manually because there is no way to store this information on the part itself. If there is more than one configuration, this step must be repeated for each one.

Connect to the part. The “OTP” button becomes enabled. In personalities 1.27 and later, the “Active” and “Configuration” indicator lights will be displayed (see Figure 6 below), and be illuminated or dark as appropriate. The green “Active” light means that the “OTP Burned” bit (R0[7]) has been burned. The red “Configuration” lights are illuminated as appropriate: if on, that configuration in the OTP has been burned.

Click the “OTP” button. In the OTP dialog, check the boxes of the configurations to be loaded. If you check a box corresponding to an unburned configuration, there will be a warning (see Figure 7 below). If there are four configurations, there is an “All” checkbox for convenience (see Figure 8 below). Click “Load”.

![Figure 4. OTP Dialogue Window](image)

![Figure 5. Message for Successful Programming](image)
Figure 6. Indicator Lights

Figure 7. Unburned Configuration Warning

Figure 8. OTP “All” Checkbox
In-System VersaClock 5 OTP Non-Volatile Programming via I2C

The procedure below enables the user to calibrate the device to a proper VCO band that will guarantee functionality over the full temperature range of the device. That band will then be programmed into the OTP. Certain conditions are required to properly program the device.

1. Conditions: Ambient temperature 25°C, 3.3V. For any other conditions, contact IDT.

2. Procedure:
 a. Power-up the device
 b. Write all relevant bits to the device to program PLL, FOD and output types
 c. Provide a reference clock to the IC corresponding to the configuration.
 d. Specific bits need to be set:
 • Set VCO Monitoring in address x1D, bit[1] to “0”
 • Set “AFC Enable” bit in address x16, bit[3] to “0”
 • Set Test mode bit in register 0x11 (bit[5]) to “0”
 e. Perform VCO Calibration:
 • Toggle bit[7] in 0x1C by writing the bit to 0 then 1 and then back to 0. Final state of the bit should be 0.
 • Wait 100 ms
 • Read band in I2C register 0x99 bit[7:3]
 (read only register located in the factory programmable section of the RAM)
 • The value read from register 0x99 has to be different from 0 or 23. If this is not the case then repeat the Calibration step.
 • Write the content of the I2C register 0x99 bit[7:3] to the bits bit[4:0] into register 0x11.
 f. Programming the OTP

Before programming the OTP, change Test mode bit in register 0x11 (bit[5]) to “1” to force the chip to run the band number written previously in bits[4:0].

Now program the OTP by following the steps on page 5 of the VersaClock 5 Family Register Descriptions and Programming Guide.
VersaClock 5 Volatile Programming via I2C

The procedure below enables the user to calibrate the device to a proper VCO band that will guarantee functionality over the full temperature range of the device. Certain conditions are required to properly calibrate the VCO.

1. Conditions: Ambient temperature 25°C, 3.3V. For any other conditions, contact IDT.

2. Procedure:
 a. Power-up the device
 b. Write all relevant bits to the device to program PLL, FOD and output types
 c. Provide a reference clock to the IC corresponding to the configuration written in point b.
 d. Specific bits need to be set:
 • Set VCO Monitoring in address x1D, bit[1] to “0”
 • Set Test mode bit in register 0x11 (bit[5]) to “0”
 e. Perform VCO Calibration:
 f. Toggle bit[7] in 0x1C by writing the bit to 0 then 1 and then back to 0. Final state of the bit should be 0.
 • Wait 100 ms
Programmed Device Testing

As indicated in the Board Overview section, the programmed device can be verified with this same board. To verify, complete the following:

- Install R14 (100KΩ) and then power up to latch the board in hardware selection mode
- Pull-up or pull-down SEL1 and SEL0 pins to proper levels to match the specific configuration for verification
- Supply VDDA, VDDD and VDD0~4
- Supply a reference signal via CLKIN/CLKINB (needed to populate C20 and C22) or a Crystal (X1) needs to placed, if not populated in the 3.2x2.5mm package. **A Crystal is not necessary for 5P49V5933/35 devices.**
- In order to probe the output(s) of interest the following components need to be placed:
 1) R15 and C15 need to be populated to measure OUT0.
 2) R17, R18 and J2 to measure OUT1.
 3) R20, R21 and J3 to measure OUT1B. R19 s required only when measuring OUT1B and OUT1 in LVDS mode.
 4) R26, R27 to measure OUT 2.
 5) R30, R31 to measure OUT2B. R29 is only required when measuring OUT2B and OUT3 in LVDS mode.
 6) R34, R35 to measure OUT 3.
 7) R37, R39 to measure OUT3B. R36 is only required when measuring OUT2B and OUT3 in LVDS mode.
 8) R41, R42 to measure OUT4.
 9) R44, R45 to measure OUT4B. R43 is only required when measuring OUT2B and OUT3 in LVDS mode.

The recommended values depends on which driver output has been selected – LVDS, LVPECL, HCSL or LVCMOS:

- LVCMOS requires 33Ω resistor termination in series.
- LVDS requires 0Ω resistor in series and 100Ω in parallel between the 2 differential outputs.
- LVPECL requires 0Ω resistor in series and 180Ω to ground for each differential signal.
- HCSL requires 33Ω resistor in series and 50Ω to ground for each differential signal.

Please refer to the board schematics on the following pages of this document.
L = 5mm is more than enough PCB Copper Decal

Recommandations for LM317LDSO-8

USB_PWR

0.1uF

27

USB_PWR

33pf

3.3V_USB

2.0 oz Copper
Notice

1. Descriptions of circuits, software, and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades. "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2019 Renesas Electronics Corporation. All rights reserved.