Description

The IDT WP15WBD-RK Evaluation Kit demonstrates 15W wireless power transfer and bi-directional data communication between a transmitter (Tx) board with the IDT P9242-R3 Wireless Power Transmitter IC and a receiver (Rx) board with the IDT P9221-R3 Wireless Power Receiver IC. The bi-directional data communication channel enables users to authenticate a wirelessly charged receiver device with a specific charging transmitter base or to transfer system data without any additional hardware.

This evaluation kit adds bi-directional communication to IDT’s standard, WPC 1.2-compliant, 15W transmitter P9242-R and receiver P9221-R evaluation kits without compromising any existing features. Its main contents are the transmitter P9242-R3-EVK Evaluation Board and the receiver P9221-R3-EVK Evaluation Board.

In customer end systems, the transmitter and receiver boards need to have external microcontrollers (MCU) to orchestrate the bi-directional communication. The MCU on the receiver board loads data into the user outgoing data registers and triggers the communication by writing to the Command register. The transmitter receives the data and interrupts the external MCU on the transmitter pad. The transmitter follows the same procedure to send the data to the receiver. There are no external MCU’s on the P9242-R3-EVK and P9221-R3-EVK Evaluation Boards. Instead, IDT I2C Lite, an intuitive I2C-based graphical user interface (GUI), and two USB-to-I2C dongles are used to emulate external MCUs. The USB-to-I2C dongles are included in the kit. The latest version of the IDT I2C Lite software is available on the IDT webpage.

This manual focuses on demonstrating the bi-directional data communication features of the P9242-R3 and P9221-R3. The P9242-R3-EVK and P9221-R3-EVK offer the flexibility to program parameters such as the over-current limit and foreign-object detection (FOD) limits by changing resistors. Refer to the user manuals for the P9242-R-EVK Transmitter Evaluation Board and P9221-R-EVK Receiver Evaluation Board for more details related to programming parameters.

Features

- Supports bi-directional data communication
- Enables device authentication and system data transfer
- Up to 15W of power transfer
- 87% end-to-end efficiency
- Flexibility to program parameters
- Intuitive IDT I2C Lite GUI
- Base kit is WPC-1.2-compliant

Kit Contents

- P9242-R3-EVK V2.1 Transmitter Evaluation Board
- P9221-R3-EVK V2.2 Receiver Evaluation Board
- Two USB-to-I2C Dongles
- Adapter: 12V/2A AC

Additional Support

This flexible, turn-key reference design is supported by online design resources to significantly expedite the design-in effort and enable rapid prototyping:

- Schematics
- Allegro® layout files

System Block Diagram
Important Notes

Disclaimer

Integrated Device Technology, Inc. and its affiliated companies (herein referred to as “IDT”) shall not be liable for any damages arising out of defects resulting from

(i) delivered hardware or software
(ii) non-observance of instructions contained in this manual and in any other documentation provided to user, or
(iii) misuse, abuse, use under abnormal conditions, or alteration by anyone other than IDT.

TO THE EXTENT PERMITTED BY LAW, IDT HEREBY EXPRESSLY DISCLAIMS AND USER EXPRESSLY WAIVES ANY AND ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, INCLUDING, WITHOUT LIMITATION, IMPLIED WARRANTIES OF MERCHANTABILITY AND OF FITNESS FOR A PARTICULAR PURPOSE, STATUTORY WARRANTY OF NON-INFRINGEMENT, AND ANY OTHER WARRANTY THAT MAY ARISE BY REASON OF USAGE OF TRADE, CUSTOM, OR COURSE OF DEALING.

Restrictions in Use

IDT’s WP15WBD-RK Evaluation Kit is designed for evaluation purposes only. It must not be used for module production or production test setups.

Contents

1. Setup ..4
 1.1 Required or Recommended User Equipment..4
 1.2 Required Software on Computer ...4
 1.2.1 Software Installation ...4
 1.3 Kit Hardware Connections...5

2. Usage Guide...7
 2.1 Overview of the P9221-R3-EVK ..7
 2.2 Overview of the P9242-R3-EVK ..8

3. Evaluating Bi Directional Data Communication ..10
 3.1 Transferring Data from the Receiver to the Transmitter ..10
 3.2 Transferring Data from the Transmitter to the Receiver ..12

4. Schematics, Bill of Materials (BOM), and Board Layout ...13
 4.1 P9221-R3-EVK Evaluation Board Schematics V2.2 ..13
 4.2 P9242-R3-EVK Evaluation Board Schematics V2.1 ..14

5. Bill of Materials (BOM)..15

6. Ordering Information..19

7. Revision History...19
List of Figures

Figure 1. Windows Device Manager Display for Troubleshooting the USB Connection ... 4
Figure 2. Evaluation Kit Connections using the P9242-R3 Transmitter Evaluation Board and the P9221-R3 Receiver Evaluation Board 5
Figure 3. I2C Header Connection to the P9221-R3-EVK Receiver Board .. 6
Figure 4. I2C Header Connection to the P9242-R3-EVK Transmitter Board ... 6
Figure 5. I2C Dongle Header ... 6
Figure 6. P9221-R3 V2.2 Evaluation Board Features .. 7
Figure 7. P9242-R3 V2.1 Evaluation Board Features .. 8
Figure 8. P9242-R3 V2.1 Evaluation Board Details .. 9
Figure 9. IDT I2C Lite Software Overview .. 10

List of Tables

Table 1. P9221-R3-EVK BOM V2.2 ... 15
Table 2. P9242-R3-EVK BOM V2.1 ... 16
1. Setup

1.1 Required or Recommended User Equipment

The following additional lab equipment is required for using the kit:

- Computer with the Windows® 7 or Windows® 10 operating system.
 Note: An optional second computer can expedite the evaluation. For this option, a second USB-to-I2C dongle is provided in the kit. In this case, repeat the setup procedures in section 1.2 for the second computer using the second dongle.
- Oscilloscope
- Multimeter
- Power cables

1.2 Required Software on Computer

Visit the WP15WBD-RK website at www.IDT.com/WP15WBD-RK, and download latest version of the IDT I2C Lite software, script files, and USB drivers from the IDT website. The software provides an intuitive graphical user interface for sending I2C commands using the USB-to-I2C dongle shipped with the Evaluation Kit.

1.2.1 Software Installation

Follow these procedures to install the software:

1. Do not connect the USB-to-I2C dongle before installing the software.
2. Run the downloaded USB Drivers Setup executable file and follow the user prompts to install the USB drivers.
3. After finishing the setup of the USB drivers, connect one of the USB-to-I2C dongles to the USB port. Wait for a few moments to let Windows® map the drivers for the dongle.
4. Open the Device Manager from the Windows control panel and check the devices listed under “Universal Serial Bus controllers” section. “FT4222H Interface A” and “FT4222H Interface B” should appear in this section as shown in Figure 1.
5. Run the IDT I2C Lite Setup file and follow the user prompts to install the IDT I2C Lite software.
6. Place the downloaded script files in the C:Users...AppDataRoamingIDT I2C Lite folder to expedite loading the script files into the IDT I2C Lite software. These scripts contain a series of I2C commands to send and receive data on the receiver and transmitter.

Figure 1. Windows Device Manager Display for Troubleshooting the USB Connection
1.3 Kit Hardware Connections

Follow these procedures to set up the kit as shown in Figure 2.

1. Plug the 12V adapter or user's power supply into the J3 barrel connector on the bottom of the P9242-R3-EVK board (see Figure 7).
2. Place the P9221-R3-EVK on the transmitter (TX) pad with the components facing up as shown in Figure 2.
3. Verify that the two green LEDs identified in Figure 2 are illuminated indicating that coupling has been established.
4. Connect wires to the VOUT and GND test points on the P9221-R3-EVK receiver to measure the output voltage (see Figure 6) and apply a load requiring less than the programmed current limit.
5. Connect the USB-to-I2C dongle to the computer's USB port. If using a second computer, connect the second dongle to its USB port.
6. To send I2C commands to the P9221-R3-EVK, connect the I2C header on one of the connected dongles to J1 on the P9221-R3-EVK as shown in Figure 3. The black wire on the dongle should be on the GND pin of the J1 Header. See sections 3.1 and 3.2 for detailed instructions.
7. To send I2C commands to the P9242-R3-EVK, connect the I2C header on one of the connected dongles to J2 on the P9242-R3-EVK as shown in Figure 4. The black wire on the dongle should be on the GND pin of the J2 header. See sections 3.1 and 3.2 for detailed instructions.

Figure 2. Evaluation Kit Connections using the P9242-R3 Transmitter Evaluation Board and the P9221-R3 Receiver Evaluation Board

Note: The buzzer shown on the P9242-R3-EVK is not placed for this kit.
Figure 3. I2C Header Connection to the P9221-R3-EVK Receiver Board

- J1 Header with I2C Port
- Dongle's I2C Header
- Black wire must be on the GND pin of J1.

Figure 4. I2C Header Connection to the P9242-R3-EVK Transmitter Board

- Dongle I2C Header
- Black wire must be on the GND pin of J2.
- J2 Header with I2C Port

Figure 5. I2C Dongle Header

- Blank
- SCL
- SDA
- GND
2. Usage Guide

2.1 Overview of the P9221-R3-EVK

Figure 6. P9221-R3 V2.2 Evaluation Board Features

- Receiver Coil
- External Temperature Sensing Resistor
- IDT P9221-R3 IC
- VOUT
- GND
- J1 Header
- SCL, SDA, GND
- Over-Current Limit Adjustment (ILIM)
- FOD Gain Adjustment (RPG)
- FOD Offset Adjustment (RPO)
- Y- Alignment Guide Voltage (ALGY)
- X- Alignment Guide Voltage (ALGX)
- VRECT
- GND
- Interrupt Flag
- Output Voltage Adjustment (VOSET)
2.2 Overview of the P9242-R3-EVK

Figure 7. P9242-R3 V2.1 Evaluation Board Features

Note: The P9242-RB IC is used on the P9242-R3 V2.1 Evaluation board instead of the P9242-R3 IC. The P9242-R3 has bi-directional communication firmware pre-programmed into its one-time programmable memory and does not allow the firmware to be customized. The P9242-RB offers a pre-programmed bootloader that must be used in conjunction with an external flash. Bidirectional communications firmware is loaded into the external flash. The firmware can be customized in external flash. There is no functionality difference between the P9242-R3 V2.1 Evaluation board with P9242-R3 IC and the P9242-RB with external flash.
Figure 8. P9242-R3 V2.1 Evaluation Board Details

- Coil Current Communication Demodulation
- Vin Selector
- Vin Decoupling Capacitors
- VCC5V, L1, and Cout
- LED Pattern Selection Resistors R44 and R43
- Load Pin Test Point (IO_A6)
- J2 I/C Header
- SCL SDA
- GND Current Limiting Resistors R40 and R48
- INT Pin Test Point (IO_B4)
- Coil Voltage Communication Demodulation
- LC Tank Capacitors
- Tx Coil Driver External Power FETs: Q1 and Q4
- Q Measurement – FOD Detection
- Tx Coil Driver External Power FETs: Q2 and Q3
- Unpopulated Thermistor RTH1 for Detecting External Temperature
- External Flash
- TS Pin Threshold Selection: R20
3. Evaluating Bi Directional Data Communication

3.1 Transferring Data from the Receiver to the Transmitter

To send the data from the P9221-R3 to the P9242-R3, the external microcontroller (MCU) on the receiver loads data into the user outgoing data registers of the P9221-R3 and triggers the communication by writing to the Command register of the P9221-R3 via the I2C bus. The P9242-R3 receives the data and interrupts the external MCU on the transmitter pad. The external MCU on the transmitter pad reads the user incoming data registers via the I2C bus after it receives the interrupt. More details on the data transfer algorithm are in the P9221-R3 and P9242-R3 datasheets.

There are no external MCUs on the receiver and transmitter evaluation boards in the WP15WBD-RD Evaluation Kit. Instead the IDT I2C Lite software and USB-to-I2C dongles are used to simulate an external MCU. The USB-to-I2C dongle does not have the capability to generate interrupts for the IDT I2C Lite software, so it is necessary to poll the Status register to check for incoming data or probe the INT test point on the P9242-R3-EVK (IO_B4 test point) using an oscilloscope.

Follow these procedures to transfer the data from the receiver board to the transmitter board:

1. Power up the transmitter and receiver evaluation boards by following the steps in section 1.3.
2. Verify that the green LEDs (identified in Figure 2) on both the transmitter and receiver boards are illuminated indicating that devices are in the power transfer phase. Bi-directional communication is enabled only when the devices are in the power transfer phase.
3. Connect the USB-to-I2C dongle to the computer’s USB port and connect the I2C header of the dongle to J1 on the P9221-R3-EVK board as shown in Figure 3. The black wire on the dongle should be on the GND pin of the J1 header.
4. Open the IDT I2C Lite GUI by going to the Windows start menu: IDT GUI Application → IDT I2C Lite. Figure 9 shows an overview.

Figure 9. IDT I2C Lite Software Overview

- Open and Close Scripts
- Select Device
- I2C Address of Selected Device
- Selected Device Connection Status
- USB-to-I2C Dongle Connection Status
- Add or Remove I2C Commands in the Script
- Delay between Consecutive I2C Transactions
- Continuously Run the Same Script
- Log I2C R/W Results
- USB-to-I2C Dongle Connection Status
- Starting Register Address
- Number of Bytes to Read or Write Including Starting Address
- Selected Device Connection Status
- Clear Data Fields
- Version #
5. Verify the proper USB dongle connection by checking the USB icon status in the top right corner of the GUI. When the USB dongle is properly connected, the USB icon should be bright blue and the bottom left corner should indicate “IDT dongle connected.”

6. Select “P9221 RX” from the “Device” drop-down menu in the GUI.

7. Verify that the proper P9221-R3-EVK connection is recognized by the GUI by checking the device icon in the top right corner of the GUI. When the P9221-R3-EVK is properly connected, the selected device icon should be bright blue and the message in the middle of the bottom status bar in the GUI should indicate “P9221 connected.”

8. Click “Open Script” from the “File” menu in the top left corner of the GUI, and navigate to the “Send 8 bytes from Rx to Tx” script. This script has all the I2C commands required to send the data from the P9221-R3 to the P9242-R3. The script can be customized by using the “+” and “–” buttons in the GUI.

9. Click the “Run all” button to run all the I2C commands in the script to send the data from the P9221-R3 to the P9242-R3.

10. If using only one computer, gently disconnect the dongle I2C header from the receiver board, and connect the I2C header to J2 of the P9242-R3-EVK transmitter board as shown in Figure 4. The black wire on the dongle should be on the GND pin on the J2 header.

If using two computers, follow the subsequent steps on the second computer to read the data.

11. Select “P9242 TX” from the “Device” drop down menu in the GUI.

12. Verify the proper P9242-R3-EVK connection to GUI by checking the selected device icon in the top right corner of the GUI. When the P9242-R3-EVK is properly connected, the icon should be in bright blue color and the bottom status bar in the GUI should indicate “P9242 connected.”

13. Click “Open Script” from the “File” menu in the top left corner of the GUI, and navigate to the “Read 8 bytes of data on Tx” script. This script has all the I2C commands required to read data coming into the P9242-R3. The script can be customized by using the “+” and “–” buttons in the GUI.

14. Click the “Run all” button to run all the I2C commands in the script to read the incoming data in the P9242-R3.

15. Verify that the incoming data on the P9242-R3 matches the P9221-R3 outgoing data.
3.2 Transferring Data from the Transmitter to the Receiver

To send the data from the P9242-R3 to the P9221-R3, the external microcontroller (MCU) on the transmitter loads data into the user outgoing data registers of the P9242-R3 and triggers the communication by writing to the Command register of the P242-R3 via the I2C bus. The P9221-R3 receives the data and interrupts the external MCU on the receiver board. The external MCU on the receiver board reads the user incoming data registers via the I2C bus after it receives the interrupt. More details on the data transfer algorithm are in the P9221-R3 and P9242-R3 datasheets.

There are no external MCUs on the receiver and transmitter evaluation boards in the WP15WBD-RD Evaluation Kit. Instead, the IDT I2C Lite software and USB-to-I2C dongle are used to simulate an external MCU. The USB-to-I2C dongle does not have the capability to generate interrupts for the IDT I2C Lite software, so it is necessary to poll the Data Received Status register to check for incoming data or probe the interrupt pin on the P9221-R3 (pin 2 on the J1 header on the P9221-R3-EVK board) using an oscilloscope.

Follow these procedures to transfer the data from the transmitter board to the receiver board:

1. Power up the transmitter and receiver evaluation boards by following the steps in section 1.3.
2. Verify that the green LEDs (identified in Figure 2) on both transmitter and receiver boards are illuminated indicating that devices are in the power transfer phase. Bi-directional communication is enabled only when the devices are in the power transfer phase.
3. Connect the USB-to-I2C dongle to the computer's USB port and connect the I2C header of the dongle to J2 on the P9242-R3-EVK board as shown in Figure 4. The black wire on the dongle should be on the GND pin of the J2 header.
4. Open the IDT I2C Lite GUI by going to the Windows start menu: IDT GUI Application → IDT I2C Lite. See Figure 9.
5. Verify the proper USB dongle connection by checking the USB icon status in the top right corner of the GUI. When the USB dongle is properly connected, the USB icon should be bright blue and the bottom left corner should indicate "IDT dongle connected."
6. Select "P9242 TX" from the "Device" drop-down menu in the GUI.
7. Verify that the proper P9242-R3-EVK connection is recognized by the GUI by checking the selected device icon in the top right corner of the GUI. When the P9242-R3-EVK evaluation board is properly connected, the icon should be bright blue and the message in the middle of the bottom status bar in the GUI should indicate "P9242 connected."
8. Click "Open Script" from the "File" menu in the top left corner of the GUI, and navigate to the "Send 2 bytes from Tx to Rx" script. This script has all the I2C commands required to send the data from the P9242-R3 to the P9221-R3. The script can be customized by using the "+" and "−" buttons in the GUI.
9. Click the “Run all” button to run all the I2C commands in the script to send the data from the P9242-R3 to the P9221-R3.
10. If using only one computer, gently disconnect the dongle I2C header from the transmitter board, and connect the I2C header to J1 on the P9221-R3-EVK receiver board as shown in Figure 3. The black wire on the dongle should be on the GND pin of the J1 header.
 If using two computers, follow the subsequent steps on the second computer to read the data.
11. Select “P9221 RX” from the “Device” drop-down menu in the GUI.
12. Verify the proper P9221-R3-EVK connection to the GUI by checking the selected device icon in the top right corner of the GUI. When the P9221-R3-EVK evaluation board is properly connected, the icon should be bright blue and the bottom status bar in the GUI should indicate "P9221 connected."
13. Click "Open Script" from the "File" menu in the top left corner of the GUI, and navigate to the “Read 2 bytes of data on Rx” script. This script has all the I2C commands required to read data coming into the P9221-R3. The script can be customized by using the "+" and "−" buttons in the GUI.
14. Click the “Run all” button to run all the I2C commands in the script to read the data coming into the P9221-R3.
15. Verify that the incoming data on the P9221-R3 matches the P9242-R3 outgoing data.
4. Schematics, Bill of Materials (BOM), and Board Layout

4.1 P9221-R3-EVK Evaluation Board Schematics V2.2
4.2 P9242-R3-EVK Evaluation Board Schematics V2.1
Bill of Materials (BOM)

Table 1. P9221-R3-EVK BOM V2.2

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Reference</th>
<th>Value</th>
<th>Description</th>
<th>Part Number</th>
<th>PCB Footprint</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
<td>AC2T, VDD5V, VPP18, VOSET, TS, SDA, SCL, RPO, RPG, INT, ILIM, GCOM, DEN, ALGY, ALGX, /EN</td>
<td>PTH_TP</td>
<td>Test Pad</td>
<td></td>
<td>10MIL_35PAD</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>AC2, LC</td>
<td>NP</td>
<td>Test Point</td>
<td>GRM155R61A105KE15D</td>
<td>0402</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>C1, C2, C3, C5</td>
<td>100nF/50V</td>
<td>CAP CER 0.1UF 50V X5R 0402</td>
<td>C1005X7R1H473K050BB</td>
<td>0402</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>C6, C14</td>
<td>47nF</td>
<td>CAP CER 0.047UF 50V X7R 0402</td>
<td>C1005X7R1H473K050BB</td>
<td>0402</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>C7, C15</td>
<td>NP</td>
<td>CAP CER 0.047UF 50V X7R 0402</td>
<td>C1005X7R1H473K050BB</td>
<td>0402</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>C8, C16</td>
<td>15nF</td>
<td>CAP CER 0.015UF 50V X7R 0402</td>
<td>GRM155R71H153KA12J</td>
<td>0402</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>C9</td>
<td>3.3nF</td>
<td>CAP CER 3300PF 50V X7R 0402</td>
<td>CL05B332KB5NNNC</td>
<td>0402</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>C10, C11, C21, C22, C33</td>
<td>10µF</td>
<td>CAP CER 10UF 25V X5R 0603</td>
<td>CL10A106MA8NRNC</td>
<td>0603</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>C12</td>
<td>NP</td>
<td>CAP CER 10UF 25V X5R 0603</td>
<td>CL10A106MA8NRNC</td>
<td>0603</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>C18</td>
<td>NP</td>
<td>CAP CER 1UF 10V X5R 0402</td>
<td>GRM155R61A105KE15D</td>
<td>0402</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>C20</td>
<td>1µF</td>
<td>CAP CER 1UF 10V X5R 0402</td>
<td>GRM155R61A105KE15D</td>
<td>0402</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>C19, C25, C31</td>
<td>0.1µF</td>
<td>CAP CER 0.1UF 10V X5R 0201</td>
<td>C0603X5R1A104K030BC</td>
<td>0201</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>C23</td>
<td>0.1µF</td>
<td>CAP CER 0.1UF 25V X5R 0201</td>
<td>CL03A104KA3NNNC</td>
<td>0201</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>D1</td>
<td>LED</td>
<td>LED GREEN CLEAR 0603 SMD</td>
<td>150060GS75000</td>
<td>0603_dio</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>D6,D7</td>
<td>5.1V</td>
<td>DIODE ZENER 5.1V 100MW 0201</td>
<td>CZRZ5V1B-HF</td>
<td>0201</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>GND1, VRECT, VOUT, VOSNS, GND</td>
<td>Test Point</td>
<td>TEST POINT PC MINIATURE SMT</td>
<td>5015</td>
<td>test_pt_sm_135x70</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>L1</td>
<td>RX coil</td>
<td>AMOTECH, Rx Power Coil</td>
<td>ASC-504060M22-S00</td>
<td>10MIL_35PAD</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>J1</td>
<td>NP</td>
<td>HEADER_1X5_0P1PITCH60P42D</td>
<td>68002-205HLF</td>
<td>header_1x5_0p1Pitch60p42d</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>RTS</td>
<td>NP</td>
<td></td>
<td>NTC2</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td>R1, R13, R14</td>
<td>5.1kΩ</td>
<td>RES SMD 5.1K OHM 5% 1/16W 0402</td>
<td>MCR01MRTJ512</td>
<td>0402</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>R2</td>
<td>36Ω</td>
<td>RES SMD 36 OHM 5% 1/2W 0805</td>
<td>ERJ-P06J360V</td>
<td>0805</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>R6</td>
<td>NP</td>
<td>RES SMD 0.0OHM 1/10W 0402</td>
<td>ERJ-2GEOR00X</td>
<td>0402</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>R8</td>
<td>0Ω</td>
<td>RES SMD 0.0OHM 1/10W 0402</td>
<td>ERJ-2GEOR00X</td>
<td>0402</td>
</tr>
<tr>
<td>24</td>
<td>2</td>
<td>R15, R16</td>
<td>10kΩ</td>
<td>RES SMD 10KOHM 1% 1/10W 0603</td>
<td>RC0603FR-0710KL</td>
<td>0603</td>
</tr>
<tr>
<td>25</td>
<td>10</td>
<td>R17, R19, R23, R27, R28, R29, R30, R34, R38, R39</td>
<td>10kΩ</td>
<td>RES SMD 10K OHM 5% 1/10W 0402</td>
<td>ERJ-2GEJ103X</td>
<td>0402</td>
</tr>
<tr>
<td>26</td>
<td>3</td>
<td>R18, R22, R33</td>
<td>NP</td>
<td>RES SMD 10K OHM 5% 1/10W 0402</td>
<td>ERJ-2GEJ103X</td>
<td>0402</td>
</tr>
</tbody>
</table>
Table 2. P9242-R3-EVK BOM V2.1

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Reference</th>
<th>Value</th>
<th>Description</th>
<th>Part Number</th>
<th>PCB Footprint</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>C1, C2, C3, C4, C13, C15, C21, C26, C29, C30, C33, C34</td>
<td>0.1µF</td>
<td>CAP CER 0.1µ F 25V 10% X7R 0402</td>
<td>C1005X7R1E104K050BB</td>
<td>0402</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>C5, C14, C31, C37, C38, C40, C41</td>
<td>10µF</td>
<td>CAP CER 10µ F 25V 20% X5R 0603</td>
<td>C1608X5R1E106M080AC</td>
<td>0603</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>C6, C12, C16, C27</td>
<td>1µF</td>
<td>CAP CER 1µ F 25V 20% X5R 0402</td>
<td>C1005X5R1E105M050BC</td>
<td>0402</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>C7, C9</td>
<td>56pF</td>
<td>CAP CER 56PF 50V NPO 0402</td>
<td>CL05CS60J5PNNC</td>
<td>0402</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>C8</td>
<td>6.8nF</td>
<td>CAP CER 6800PF 25V X7R 0402</td>
<td>GRM155R71E682KA01D</td>
<td>0402</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>C10, C11</td>
<td>22nF</td>
<td>0.022µF F 50V Ceramic Capacitor X7R 0603</td>
<td>GCM188R71H223KA37D</td>
<td>0603</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>C17</td>
<td>680pF</td>
<td>CAP CER 680PF 50V X7R 0402</td>
<td>CL05B681KB5NNNC</td>
<td>0402</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>C18</td>
<td>1nF</td>
<td>CAP CER 1000pF ±10% 50V X7R 0402</td>
<td>GRM155R71H102KA01D</td>
<td>0402</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>C19, C35, C39</td>
<td>5.6nF</td>
<td>5600pF 100V Ceramic Capacitor COG, NPO 0603</td>
<td>C1608CG2A562J080AC</td>
<td>0603</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>C20</td>
<td>100nF</td>
<td>CAP CER 0.1µ F 100V COG 1206</td>
<td>C3216CG2A104K160AC</td>
<td>1206</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>C22</td>
<td>22nF</td>
<td>CAP CER 0.022µF F 50V 10% X7R 0402</td>
<td>GRM155R71H223KA12D</td>
<td>0402</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>C23</td>
<td>68nF</td>
<td>CAP CER 0.068µF F 100V NPO 1206</td>
<td>C3216CG2A683K160AC</td>
<td>1206</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>C24</td>
<td>47nF</td>
<td>CAP CER 0.047µF F 100V NPO 1206</td>
<td>C3216CG2A473J115AC</td>
<td>1206</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>C25</td>
<td>NP</td>
<td>CAP CER 10000PF 100V COG 1206</td>
<td>C3216CG2A103J115AA</td>
<td>1206</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>C28, C32</td>
<td>22µF</td>
<td>CAP CER 22µF F 25V 20% X5R 1206</td>
<td>GRM31CR61E226KE15L</td>
<td>1206</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>C36</td>
<td>0.1µF</td>
<td>CAP CER 0.1µ F 25V 10% X7R 0402</td>
<td>C1005X7R1E104K050BB</td>
<td>0402</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>C42</td>
<td>0.1µF</td>
<td>0.1µF F 50V Ceramic Capacitor X7R 0603</td>
<td>GRM188R71H104KA93D</td>
<td>0603</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>C43</td>
<td>1µF</td>
<td>1µF F 25V Ceramic Capacitor X5R 0603</td>
<td>GRM188R61E105KA12D</td>
<td>0603</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>C44</td>
<td>4.7µF</td>
<td>4.7µF F 25V Ceramic Capacitor X5R 0603</td>
<td>GRM188R61E475KE11D</td>
<td>0603</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>D1, D2</td>
<td>BAV21W</td>
<td>DIODE GEN PURP 80V 125MA DFN</td>
<td>BAV21W-7-F</td>
<td>sod123</td>
</tr>
<tr>
<td>Item</td>
<td>Quantity</td>
<td>Reference</td>
<td>Value</td>
<td>Description</td>
<td>Part Number</td>
<td>PCB Footprint</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>-----------</td>
<td>-------</td>
<td>-------------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>21</td>
<td>30</td>
<td>VLX1, VINT1, IO_B1, IO_A1, GNDT1, vs2, VLX2, VINT2, IO_B2, GNDT2, vs3, IO_B3, IO_B4, IO_A4, VCC5V, IO_B5, IO_A5, IO_B6, IO_A6, IO_B7, IO_A7, IO_B8, LDO18, LDO33, VSNS_IN, VCOIL, VBRG, IO_B0, IO_A0, ENB</td>
<td>PTH_TP</td>
<td>30 GAUGE WIRE PAD</td>
<td>NP</td>
<td>TEST_PT30DPAD</td>
</tr>
<tr>
<td>22</td>
<td>7</td>
<td>VIN1, GND1, GND2, GND3, GND4, VIN, GND</td>
<td>TP</td>
<td>TEST POINT PC MINIATURE SMT</td>
<td>5015</td>
<td>test_pt_sm_135x70</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>J1</td>
<td>5P</td>
<td>CONN RCPT MCR USB AB SMD TH SHLL</td>
<td>ZX62D-AB-5P8</td>
<td>usb_micro_ab</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>J2</td>
<td>68000-105HLF</td>
<td>BERGSTIK II .100” SR STRAIGHT</td>
<td>68000-105HLF</td>
<td>sip5</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>J3</td>
<td>AC Adapter</td>
<td>CONN POWER JACK 2.5X5.5MM HI CUR</td>
<td>PJ-002AH</td>
<td>CONN_POWER_JACK5_5MM</td>
</tr>
<tr>
<td>26</td>
<td>1</td>
<td>J4</td>
<td>TP</td>
<td>CONN HEADER 3POS .100” STR GOLD</td>
<td>901200763</td>
<td>sip3</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>J5</td>
<td>SIP con 4-position header</td>
<td>961104-6404-AR</td>
<td>sip4</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1</td>
<td>LED1</td>
<td>LED</td>
<td>LED RED CLEAR 0603 SMD</td>
<td>150060RS75000</td>
<td>0603_diode</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>LED2</td>
<td>LED</td>
<td>LED GREEN CLEAR 0603 SMD</td>
<td>150060GS75000</td>
<td>0603_diode</td>
</tr>
<tr>
<td>30</td>
<td>2</td>
<td>LX1, LX2</td>
<td>NP</td>
<td>Tx coil assemble through hole</td>
<td>NA</td>
<td>TP_TXCoil</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>L1</td>
<td>4.7µH</td>
<td>FIXED IND 4.7µH 620MA 500 MOHM</td>
<td>CIG10W4R7MNC</td>
<td>L0603</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>L2</td>
<td>NP</td>
<td>Common mode EMI choke</td>
<td>ACM4520-901-2P-T-000</td>
<td>EMI_TDK_ACM4520L</td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>PZ1</td>
<td>NP</td>
<td>BUZZER PIEZO 4KHZ 12.2MM PC MNT</td>
<td>PS1240P02CT3</td>
<td>9235_buzzer</td>
</tr>
<tr>
<td>34</td>
<td>4</td>
<td>Q1, Q2, Q3, Q4</td>
<td>DMG74 30LF</td>
<td>MOSFET N-CH 30V 10.5A PWRDI3333</td>
<td>DMG7430LFG-7</td>
<td>powerdi3333_8ld_fet</td>
</tr>
<tr>
<td>35</td>
<td>3</td>
<td>Q5, Q7, Q8</td>
<td>2N7002</td>
<td>N-Channel 60-V (D-S) MOSFET</td>
<td>2N7002KT1G</td>
<td>SOT23_3</td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>Q6</td>
<td>MOSFET</td>
<td>MOSFET P-CH 30V 24A PPAK SC-70-6</td>
<td>SIA453EDJ-T1-GE3</td>
<td>sc70_6ld_fet</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>RTH1</td>
<td>NP</td>
<td>NTC thermistor 10k bead</td>
<td>NTCL203E3103JB0</td>
<td>0805</td>
</tr>
<tr>
<td>38</td>
<td>3</td>
<td>R1, R3, R7</td>
<td>1kΩ</td>
<td>RES SMD 1K OHM 5% 1/16W</td>
<td>RC0402JR-071KL</td>
<td>0402</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>R4</td>
<td>680Ω</td>
<td>RES SMD 680 OHM 5% 1/16W</td>
<td>RC0402JR-07680RL</td>
<td>0402</td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>R5</td>
<td>NP</td>
<td>RES SMD 0.0 OHM JUMPER 1/10W</td>
<td>RC0402JR-070RL</td>
<td>0402</td>
</tr>
<tr>
<td>41</td>
<td>9</td>
<td>R6, R13, R16, R20, R23, R41, R42, R43, R48</td>
<td>10kΩ</td>
<td>RES SMD 10K OHM 1% 1/10W</td>
<td>RC0402FR-0710KL</td>
<td>0402</td>
</tr>
<tr>
<td>42</td>
<td>5</td>
<td>R8, R26, R30, R31, R32</td>
<td>100kΩ</td>
<td>RES SMD 100K OHM 5% 1/10W</td>
<td>ERJ-2GEJ104X</td>
<td>0402</td>
</tr>
<tr>
<td>Item</td>
<td>Quantity</td>
<td>Reference</td>
<td>Value</td>
<td>Description</td>
<td>Part Number</td>
<td>PCB Footprint</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
<td>-------------</td>
<td>-------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>43</td>
<td>1</td>
<td>R24</td>
<td>100K</td>
<td>RES SMD 100K OHM 5% 1/10W 0402</td>
<td>ERJ-2GEJ104X</td>
<td>0402</td>
</tr>
<tr>
<td>44</td>
<td>1</td>
<td>R9</td>
<td>NP</td>
<td>RES SMD 100 OHM 5% 1/10W 0603</td>
<td>RC0603JR-07100RL</td>
<td>0603</td>
</tr>
<tr>
<td>45</td>
<td>2</td>
<td>R10, R12</td>
<td>390kΩ</td>
<td>RES SMD 390K OHM 5% 1/10W 0603</td>
<td>ERJ-3GEYJ394V</td>
<td>0603</td>
</tr>
<tr>
<td>46</td>
<td>1</td>
<td>R14</td>
<td>2.4kΩ</td>
<td>RES SMD 2.4K OHM 5% 1/10W 0402</td>
<td>ERJ-2GEJ242X</td>
<td>0402</td>
</tr>
<tr>
<td>47</td>
<td>2</td>
<td>R11, R35</td>
<td>200kΩ</td>
<td>RES SMD 200K OHM 1% 1/10W 0603</td>
<td>RC1608F204CS</td>
<td>0603</td>
</tr>
<tr>
<td>48</td>
<td>2</td>
<td>R15, R21</td>
<td>10Ω</td>
<td>RES SMD 10 OHM 1% 1/10W 0402</td>
<td>ERJ-2RKF10R0X</td>
<td>0402</td>
</tr>
<tr>
<td>49</td>
<td>1</td>
<td>R18</td>
<td>0.02Ω</td>
<td>RES SMD 0.02 OHM 1% 1/8W 0805</td>
<td>WSL0805R0200FEA</td>
<td>0805</td>
</tr>
<tr>
<td>50</td>
<td>4</td>
<td>R19, R22, R40, R44</td>
<td>NP</td>
<td>RES SMD 10K OHM 1% 1/10W 0402</td>
<td>RC0402FR-0710KL</td>
<td>0402</td>
</tr>
<tr>
<td>51</td>
<td>4</td>
<td>R25, R27, R28, R29</td>
<td>12Ω</td>
<td>RES SMD 12 OHM 5% 1/10W 0402</td>
<td>ERJ-2GEJ120X</td>
<td>0402</td>
</tr>
<tr>
<td>52</td>
<td>1</td>
<td>R33</td>
<td>3Ω</td>
<td>RES SMD 3 OHM 1% 1/8W 0805</td>
<td>RC0805FR-073RL</td>
<td>0805</td>
</tr>
<tr>
<td>53</td>
<td>1</td>
<td>R34</td>
<td>100kΩ</td>
<td>RES SMD 100K OHM 1% 1/10W 0603</td>
<td>ERJ-3EXF1003V</td>
<td>0603</td>
</tr>
<tr>
<td>54</td>
<td>2</td>
<td>R36, R37</td>
<td>0.1Ω</td>
<td>RES SMD 0.1 OHM 5% 1/6W 0402</td>
<td>ERJ-2BSJR10X</td>
<td>0402</td>
</tr>
<tr>
<td>55</td>
<td>2</td>
<td>R38, R39</td>
<td>0Ω</td>
<td>RES SMD 0.0 OHM JUMPER 1/10W</td>
<td>RC0402JR-070RL</td>
<td>0402</td>
</tr>
<tr>
<td>56</td>
<td>1</td>
<td>R45</td>
<td>220Ω</td>
<td>RES SMD 220 OHM 1% 0.4W 0805</td>
<td>RC1206FR-07220RL</td>
<td>1206</td>
</tr>
<tr>
<td>57</td>
<td>2</td>
<td>R46, R47</td>
<td>5.1kΩ</td>
<td>RES SMD 5.1K OHM 5% 1/16W 0402</td>
<td>MCR01MRTJ512</td>
<td>0402</td>
</tr>
<tr>
<td>58</td>
<td>1</td>
<td>U1[a]</td>
<td>P9242-RB Transmitter (Bootloader Part)</td>
<td>P9242-RB</td>
<td>socketqfn_48_6x6_0p4</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>1</td>
<td>U2</td>
<td>W25X20 CLUXIG SPIFLASH 2M-BIT 4KB UNIFORM SECT</td>
<td>W25X20CLUXIG TR</td>
<td>uson_2x3_8LD</td>
<td></td>
</tr>
</tbody>
</table>

[a] The P9242-RB offers a pre-programmed bootloader that must be used in conjunction with an external flash. Bi-directional communications firmware is loaded into the external flash. The firmware can be customized in external flash. There is no functionality difference between the P9242-R3 V2.1 Evaluation board with P9242-R3 IC and the P9242-RB with external flash.
6. **Ordering Information**

<table>
<thead>
<tr>
<th>Orderable Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WP15WBD-RK</td>
<td>WP15WBD-RK Bi-directional Data Transfer Evaluation Kit including P9242-R3-EVK Transmitter Evaluation Board, P9221-R3-EVK Receiver Evaluation Board, two USB to I2C Dongles, and 12V/2A AC Adapter.</td>
</tr>
</tbody>
</table>

7. **Revision History**

<table>
<thead>
<tr>
<th>Revision Date</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 21, 2018</td>
<td>● Updated Figure 7 (and added note below figure) and Figure 8</td>
</tr>
<tr>
<td></td>
<td>● Updated Table 2</td>
</tr>
<tr>
<td>October 19, 2017</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2020 Renesas Electronics Corporation. All rights reserved.