Important Notes

Restrictions in Use

IDT's ZAMC4100 Evaluation Kit, consisting of the ZAMC4100 Evaluation Board, ZAMC4100 Adaptor Board, LIN Communication Board, and the communication/calibration software, is designed for product evaluation, laboratory setup, and application software development only.

IDT's Evaluation Kit hardware and software must not be used for production or production test setups.

Disclaimer

IDT shall not be liable for any damages arising out of defects resulting from

(i) delivered hardware or software
(ii) non-observance of instructions contained in this manual and in any other documentation provided to user, or
(iii) misuse, abuse, use under abnormal conditions, or alteration by anyone other than IDT.

To the extent permitted by law, IDT hereby expressly disclaims and user expressly waives any and all warranties, whether express, implied, or statutory, including, without limitation, implied warranties of merchantability and of fitness for a particular purpose, statutory warranty of non-infringement, and any other warranty that may arise by reason of usage of trade, custom, or course of dealing.

Important Equipment Warning: If not followed properly, these procedures can result damage to the user’s equipment. Only trained professionals should connect equipment. Ensure that all kit users have read and understood this document before using the kit.

Contents

1 Introduction ... 5
 1.1. Contents of Kit ... 5
 1.1.1. ZAMC4100 Evaluation Board V1.1 (EVB) .. 5
 1.1.2. ZAMC4100 Adaptor Board V1.0 ... 6
 1.1.3. LIN Communication Board V1.0 ... 6
 1.1.4. Segger J-LINK® Lite ARM® JTAG Debug Probe (Optional) .. 7
 1.1.5. Software .. 8
 1.2. Required Equipment .. 8
 1.2.1. Operation Without any Actual Load Connected .. 8
 1.2.2. Operation with Actual Loads Connected .. 8
 1.3. Hardware Description .. 9
 1.3.1. Evaluation Board Feature Overview .. 9
 1.3.2. High Side Drivers (HS1-HS4) ... 10
 1.3.3. Half Bridge Drivers (HB1-HB4) and AIN1/AIN2 .. 11
 1.3.4. ECM Driver .. 12
 1.3.5. Power Supply Unit (PSU) Circuit (VBAT) .. 13
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>ZAMC4100 Evaluation Board</td>
</tr>
<tr>
<td>1.2</td>
<td>ZAMC4100 Adaptor Board</td>
</tr>
<tr>
<td>1.3</td>
<td>LIN Communication Board</td>
</tr>
<tr>
<td>1.4</td>
<td>Segger J-LINK® Lite ARM® JTAG Debug Probe</td>
</tr>
<tr>
<td>1.5</td>
<td>ZAMC4100 Evaluation Board with Adapter Board Installed – Connectors and Block Description</td>
</tr>
<tr>
<td>1.6</td>
<td>Evaluation Board Schematics Sections for the High Side Drivers</td>
</tr>
<tr>
<td>1.7</td>
<td>Evaluation Board Schematics Sections for Half Bridge Drivers for Adjustment and AIN1/AIN2</td>
</tr>
<tr>
<td>1.8</td>
<td>Evaluation Board Schematics Section for the Folding Motor</td>
</tr>
<tr>
<td>1.9</td>
<td>Evaluation Board Schematics Section for the ECM Driver</td>
</tr>
<tr>
<td>1.10</td>
<td>Evaluation Board Schematics Section for PSU Circuit</td>
</tr>
<tr>
<td>1.11</td>
<td>AIN3 and AIN4 Sensor Port</td>
</tr>
<tr>
<td>1.12</td>
<td>Adaptor Board</td>
</tr>
<tr>
<td>2.1.1</td>
<td>PC Prerequisites</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Installation of Keil™ µVision 4 IDE and Setup</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Segger J-LINK® Lite ARM® JTAG Debug Probe Setup</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Preparing the Segger J-LINK® Lite ARM® JTAG Debug Probe for Initial Operation</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Keil™ ULINK2 Setup</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Keil™ µVision4 Project Debugger Selection</td>
</tr>
<tr>
<td>2.2.5</td>
<td>EVB Hardware Pre-check</td>
</tr>
<tr>
<td>2.2.6</td>
<td>Connecting the Hardware</td>
</tr>
<tr>
<td>2.2.7</td>
<td>Step 2: Connect the LIN Communication Board to the PC via the USB Cable Type B</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Starting the GUI</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Connect to EVB</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Mirror Control and Visualization</td>
</tr>
<tr>
<td>3</td>
<td>Related Documents</td>
</tr>
<tr>
<td>4</td>
<td>Glossary</td>
</tr>
<tr>
<td>5</td>
<td>Document Revision History</td>
</tr>
<tr>
<td>Appendix A</td>
<td>Adaptor Board Schematic</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Evaluation Board Schematic</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Bill of Materials</td>
</tr>
</tbody>
</table>
Figure 1.11 Evaluation Board Schematics Section for the GPIO Buffer and Level Shifter 14
Figure 1.12 Evaluation Board Schematics Section for the 5V Linear Regulator 14
Figure 1.13 Evaluation Board Schematics Section for the JTAG Interface ... 15
Figure 1.14 Schematics for the Expansion Connector ... 15
Figure 1.15 Evaluation Board Schematic Sections for the LIN Bus .. 16
Figure 1.16 Evaluation Board Schematics Sections for AIN3 and AIN4 ... 16
Figure 1.17 Evaluation Board Schematics Section for S_P and S_N .. 17
Figure 1.18 Top and Bottom Side of the Adaptor Board Shown Before and After Mounting the ZAMC4100. .. 17
Figure 1.19 Keil™ μVision4 IDE Installation Window .. 19
Figure 1.20 ZAMC4100 SDK Installation Window .. 19
Figure 1.21 ZAMC4100 SDK Component Selection ... 20
Figure 1.22 FTDI Driver Setup .. 21
Figure 1.23 Segger J-LINK® Lite ARM® JTAG Debug Probe ... 22
Figure 1.24 Starting the J-Link Configurator .. 23
Figure 1.25 Starting J-Link Configurator Window .. 23
Figure 1.26 J-Link Configurator Firmware Update in Progress Window ... 24
Figure 1.27 Keil™ ULINK2 .. 25
Figure 1.28 Keil™ ULINK2 Jumper Position .. 25
Figure 1.29 Keil™ μVision4 IDE Debugger Setup for the Keil™ ULINK2 .. 26
Figure 1.30 Keil™ μVision4 IDE Debugger Setup for the Segger J-LINK® Lite ARM® JTAG Probe ... 27
Figure 1.31 ZAMC4100 Evaluation Board – Connector and Jumper Description 28
Figure 1.32 Step 1: Hardware Setup ZAMC4100 Evaluation Board with LIN Communication Board 29
Figure 1.33 Step 2: Full Hardware Connection Diagram .. 29
Figure 1.34 Keil™ μVision4 IDE with ZAMC4100 Package Installed .. 30
Figure 1.35 License Agreement .. 31
Figure 1.36 ZAMC4100 GUI Main Window ... 31
Figure 1.37 ZAMC4100 GUI Communication Setup .. 32
Figure 1.38 LED Indication ... 33
Figure 1.39 GUI Connected .. 34
Figure 1.40 Description of Mirror Control Buttons ... 35
Figure 1.41 Effects of Clicking Buttons ... 36
Figure 1.42 Mirror Folding/Unfolding ... 37
Figure 1.43 Mirror Position .. 37
Figure 1.44 Location of J3 and J4 .. 38
Figure 1.45 “Mirror Temperature” Display and J5 for External Temperature Selection 38
Figure 1.46 Simulation of the ECM Function .. 39
Figure 1.47 Displaying the Registers Window .. 40
Figure 1.48 Registers Window ... 40
Figure 1.49 Reading a Register .. 41
Figure 1.50 Writing to a Register ... 41
Figure 1.51 Accessing Bit Descriptions ... 42
List of Tables

Table 2.1 Prerequisites ..18
Table 2.2 Mirror Control Buttons ...35
Table 5.1 Bill of Materials ..47
1 Introduction

This manual describes the use of the ZAMC4100 Evaluation Kit and the ZAMC4100 Evaluation Software. It also describes the setup of the Keil™ ULINK2 JTAG debugger/programmer (not included in kit).

1.1 Contents of Kit

The kit is designed for the purpose of evaluating a typical rearview mirror application for the automotive industry. However it can be used for other applications as well.

The ZAMC4100 Evaluation Kit includes the following as illustrated in Figure 2.14:

- ZAMC4100 Evaluation Board V1.0 (EVB)
- ZAMC4100 Adaptor Board V1.0
- LIN Communication Board V1.0
- USB cable
- Segger J-LINK® Lite ARM® JTAG debug probe* (optionally included in the Evaluation Kit depending on the order code)

The kit also requires the ZAMC4100 Evaluation Software, which is downloaded from IDT’s website as described in section 1.1.3.

1.1.1 ZAMC4100 Evaluation Board V1.1 (EVB)

The EVB is a placeholder where all connections and measurements can be made. There is also a JTAG connector mounted on it. The EVB provides header connectors for mounting the ZAM4100 Adaptor Board above the EVB.

* J-Link® is a trademark of SEGGER Microcontroller GmbH & Co.; ARM® is a trademark of ARM, Ltd.
1.1.1.1. Differences between EVB V1.1 and V1.0

EVB v1.0 and EVB v1.1 are completely functionality compatible. The only difference is a modification of the JTAG circuitry. The EVB v1.1 can function with versions of Keil™ µVision® greater than version 4.7 and also with the Segger J-LINK® Lite ARM® JTAG debug probe.

1.1.2. ZAMC4100 Adaptor Board V1.0

The ZAMC4100 Adaptor Board is a small printed circuit board (PCB) with the ZAMC4100 device soldered on it. It is stacked on top on the EVB.

Important: The adapter board is designed so that it is impossible to stack it in an incorrect position. If it does not fit, check the markings on both the Adaptor Board and EVB (look for pin 1 on both circuit boards).

![ZAMC4100 Adaptor Board](image)

1.1.3. LIN Communication Board V1.0

The LIN Communication Board shown in Figure 1.3 is designed to provide simple LIN communication and a power supply to the EVB.

Important Equipment Warning: The LIN Communication Board has limited power; i.e., it can power the EVB if there are not any actual loads connected. In this case, only the LEDs are powered.

Keil™ µVision® is a trademark of ARM Ltd.
1.1.4. Segger J-LINK® Lite ARM® JTAG Debug Probe (Optional)

The Segger J-LINK® Lite ARM® debug probe is an optional component of the ZAMC4100 Evaluation Kit; i.e., the kit can be ordered with or without the J-LINK® Lite ARM® JTAG Debug Probe. It allows programming and debugging of the EVB. See section 2.2.2 for the set up instructions.

Important Note: The Segger J-LINK® Lite ARM® cannot be ordered separately from IDT.
1.1.5. Software
Software package is available for download from the ZAMC4100 product page www.IDT.com/ZAMC4100 and contains everything needed to start the evaluation of the ZAMC4100 as well as to start writing custom firmware. The software package includes the following:

- Drivers for the Evaluation Kit hardware
- Demonstration software
- *Software Development Kit* for the ZAMC4100 with examples and documentation
- Demonstration graphical user interface (GUI)
- Data sheet, application notes, and schematics for the EVB

![Equipment Warning:](image) Although there might be newer versions of some of the drivers, tools, or libraries available, it is highly recommended that those included in the software package be used initially.

1.2. Required Equipment
Initially, the ZAMC4100 on the EVB is programmed with demonstration firmware so that upon delivery, it can be used in one of two possible ways: with or without an actual load connected.

1.2.1. Operation without any Actual Load Connected
The requirements when operating without actual loads connected (i.e., no mirror or load of any kind connected to the load terminals) are as follows:

- One free USB 2.0 port
- Microsoft® .NET Framework version 3.5 to run the GUI
- Internet connection (for subsequent updates)
- EVB programmed with demonstration firmware (as delivered with the kit)
- LIN Communication Board

1.2.2. Operation with Actual Loads Connected
In addition to the previous requirements, when connecting actual loads to the EVB, it is imperative to use an external power supply capable of powering all loads.

![Important Equipment Warning:](image) The LIN Communication Board is not capable of powering external loads. If an attempt is made to operate with an external load without an external power supply, it is possible to damage the USB port of the PC in use.
1.3. Hardware Description

1.3.1. Evaluation Board Feature Overview

Figure 1.5 ZAMC4100 Evaluation Board with Adapter Board Installed – Connectors and Block Description

Note: HB2 is a shared half bridge.
1.3.2. High Side Drivers (HS1-HS4)

Figure 1.6 Evaluation Board Schematics Sections for the High Side Drivers
1.3.3. Half Bridge Drivers (HB1-HB4) and AIN1/AIN2

1.3.3.1. Mirror Adjustment (HB2, HB3 and HB4) and Mirror Position Sensing

The schematic sections shown on the left in Figure 1.7 have a typical 5A-rated header connector for an X and Y axis mirror motor. The schematic on the right shows the two methods of generating the AIN1 and AIN2 signals; e.g., for sensing the mirror position:

- External potentiometer for X-Y feedback signal
- On-board potentiometer

See Figure 2.13 for the locations of the following jumpers. Also see section 1.3.11 regarding AIN3 and AIN4. Jumper J3 selects the source of the signal for AIN1 – on-board potentiometer or external voltage. Jumper J4 is the same as J3 but for AIN2. Jumpers J16 and J17 control the power supply for S_P and S_N respectively (see Figure 1.17 for the schematic showing the jumpers).

Figure 1.7 Evaluation Board Schematics Sections for Half Bridge Drivers for Adjustment and AIN1/AIN2
1.3.3.2. Folding Motor

The schematic section shown in Figure 1.8 is for the folding motor header. It operates with a bi-directional current, which opens and closes the side mirror.

Figure 1.8 Evaluation Board Schematics Section for the Folding Motor

1.3.4. ECM Driver

Figure 1.9 shows the schematics section for the electrochromatic mirror (ECM) connection.

Figure 1.9 Evaluation Board Schematics Section for the ECM Driver
1.3.5. Power Supply Unit (PSU) Circuit (VBAT)

Figure 1.10 shows the PSU circuit used on the EVB, which is a typical PSU circuit for meeting the specifications given in the ZAMC4100 Data Sheet. Note that J1 can be used to measure current.

Figure 1.10 Evaluation Board Schematics Section for PSU Circuit

For high current, it is advisable to use a solder link on J1 rather than using a jumper (see Figure 2.13 for location). The D1 diode is used to protect the board in the event that the power cable polarity is incorrectly fitted due to user error.

Note: The EVB has a reverse polarity protection, which prevents the EVB from being damaged provided that the voltage is within acceptable limits. If polarity of the power connection is incorrect, a red LED will turn on. If the power polarity is correct, then a green LED will turn on.

Note: For proper kit operation, the power supply voltage should be approximately 12V.
1.3.6. GPIO Interface

The GPIO pins are connected to U2 and U3, which are TXB0104D bidirectional voltage translators with automatic direction sensing. For more information, refer to the data sheet of the manufacturer (Texas Instruments). The TXB0104D is used to avoid excessive loading on the ZAMC4100 when driven by LEDs if it is powered by the linear regulator (refer to the ZAMC4100 Data Sheet).

The J7 header allows the user to connect the buffered GPIO signal to an external device or to link the jumper to an LED.

The J8 jumper selects whether the LEDs are to be turned on or off.

Figure 1.11 Evaluation Board Schematics Section for the GPIO Buffer and Level Shifter

1.3.7. Linear Regulator

The linear regulator provides power for the ECM and GPIO buffer. This avoids unnecessary loading on the ZAMC4100.

Figure 1.12 Evaluation Board Schematics Section for the 5V Linear Regulator
1.3.8. **JTAG Interface**

The JTAG connector is based on standard pin layout and functions with the Keil™ ULINK2 JTAG debugger (not included in the ZAMC4100 Evaluation Kit).

Figure 1.13 Evaluation Board Schematics Section for the JTAG Interface

1.3.9. **Expansion Connector**

The expansion connection is optional. It should not be used; however, it can provide an additional header for the GPIO lines.

Figure 1.14 Schematics for the Expansion Connector
1.3.10. LIN Bus

Figure 1.15 shows the LIN Bus connector. For any LIN communication, the J11 jumper should be on. Jumper J10 selects whether the pull-up resistor R35 is included or not. For jumper locations, see Figure 2.13.

Figure 1.15 Evaluation Board Schematic Sections for the LIN Bus

1.3.11. AIN3 and AIN4 Sensor Port

The AIN3 and AIN4 sensor ports are highly versatile: each port has two jumper options as shown in Figure 1.16. Jumpers J5 and J9 select whether an on-board or external sensor is used for AIN3 and AIN4 respectively. (See Figure 2.13 for jumper locations.) If jumpers J16 and J17 are shunted, then the ADC reference power is externally supplied as shown in Figure 1.17. Otherwise ADC power is generated internally by the ZAMC4100.

Note: In addition to shunting J16 and J17, the ADC configuration must also be changed via the GUI in order for the external power supply to be used for the ADC.

Figure 1.16 Evaluation Board Schematics Sections for AIN3 and AIN4
1.3.12 Adaptor Board

The Adaptor Board is used to connect the ZAMC4100 to the Evaluation Board. Figure 1.18 shows the board before and after assembly.

The Adaptor Board has the following on-board PSU filtering capacitors:
- C11 (47nF) is for CAP_1V8
- C12 (47nF) is for CAP_3V3
- C13 (47nF) is for CAP_MCU
- C14 (220nF) is for CAP_5V0
2 Kit Setup

This section describes setting up the software and usage of the ZAMC4100 graphical user interface (GUI) with the Evaluation Kit after the ZAMC4100 has been programmed with demonstration firmware. The full functions and features of the GUI can be utilized in combination with the ZAMC4100 Evaluation Kit V1.1.

2.1 Directions for Downloading and Installing the ZAMC4100 Evaluation Software

The software tools needed to use the ZAMC4100 Evaluation Kit are provided within a single software package, which installs the ZAMC4100 SDK, drivers, and other components. This ZAMC4100 Evaluation Software package is available for download from the ZAMC4100 product page at www.IDT.com/ZAMC4100.

After downloading this zip file, extract the zip file contents. Complete the following steps to set up the software for the kit in the order given.

2.1.1. PC Prerequisites

The GUI is designed to run on a Microsoft® Windows™ operating system; Windows XP or a newer version is required. The supported resolution is 800x600 or higher. The GUI demonstrates all main functions of the ZAMC4100 and allows READ and WRITE access to the registers of the ZAMC4100.

<table>
<thead>
<tr>
<th>Software Tool Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsoft Chart Control for Microsoft® .Net Framework 3.5</td>
<td>Chart Control is used by the GUI. It can be downloaded from the following link: http://www.microsoft.com/en-us/download/details.aspx?id=14422 This library must be installed prior the using the GUI.</td>
</tr>
</tbody>
</table>

If Microsoft® .Net Framework 3.5 is not installed on the user’s computer, it can be obtained from the Microsoft® website.

Note that if a newer version of Microsoft .Net Framework is installed, it cannot be assumed that version 3.5 is installed.

2.1.2. Installation of Keil™ µVision 4 IDE and Setup

Download and install the trial version of Keil™ µVision 4 IDE from http://www.keil.com. Start the setup program and follow the on-screen instructions.
Click the “Next” button and follow the screen instructions.

2.1.2.1. Installation of ZAMC4100 SDK

Double-click `ZAMC4100_SDK-1.0-setup_M.exe` to begin the setup. Note: Because the setup installs device drivers, this step requires administrative privileges on the user’s PC. The first screen displays IDT’s license agreement as shown in Figure 2.2. It must be accepted by clicking the “I Agree” button in order setup to proceed.

Important: This setup installs third party drivers with separate license agreements that must be accepted in order to have those drivers installed.
Next the ZAMC4100 SDK setup will ask which components are to be installed. The first two components are mandatory, and they must be always installed. The other components are Microsoft .Net 3.5 and the ZAMC4100 SDK. For a first time installation, it is highly recommended that all components are selected. Select the components to be installed and press “Next.”

The setup will start the installation of the selected components and drivers.

Note: During the installation, the setup program will ask for a Keil™ µVision destination folder. Ensure that the selected folder is correct.

Figure 2.3 ZAMC4100 SDK Component Selection
Figure 2.4 FTDI Driver Setup

![FTDI Driver Setup](image-url)
2.2. Hardware Setup

2.2.1. Segger J-LINK® Lite ARM® JTAG Debug Probe Setup

This section describes setting up the Segger® J-LINK Lite ARM® JTAG debugger/programmer to function with the ZAMC4100 Evaluation Board. The Segger J-LINK Lite ARM is an option for the ZAMC4100 Evaluation Kit, and it is shown on Figure 2.5.

Figure 2.5 Segger J-LINK® Lite ARM® JTAG Debug Probe

Connect the 20-pin ribbon cable on the Segger® J-LINK Lite ARM® JTAG Debug Probe to the JTAG connector (P2) shown in Figure 2.13. See section 1.3.8 for more information about P2.

2.2.2. Preparing the Segger J-LINK® Lite ARM® JTAG Debug Probe for Initial Operation

This section describes the first startup of the Segger J-LINK® Lite ARM® JTAG Debug Probe. This step is needed in order to get the latest version of the J-LINK® Lite ARM® firmware that supports the ZAMC4100.

Connect the Debug Probe to a free USB port on the user’s PC and wait while the drivers are automatically installed; then from the Windows® start menu, start the J-Link Configurator.

Important recommendation: Check www.segger.com for updated drivers.
Figure 2.6 Starting the J-Link Configurator

When the J-Link Configurator is started the following window will appear.

Figure 2.7 Starting J-Link Configurator Window
The J-LINK® Lite ARM® probe is listed in the window. Check the check box and then click the “Update firmware of the selected emulators” button. This will initiate the firmware update process.

Figure 2.8 J-Link Configurator Firmware Update in Progress Window

When the firmware update process is completed, the J-Link Configurator can be closed.
2.2.3. Keil™ ULINK2 Setup

This section describes setting up the Keil™ ULINK2 JTAG debugger/programmer to work with the ZAMC4100 Evaluation Board. The Keil™ ULINK2 (not included in the ZAMC4100 Evaluation Kit) is shown in Figure 2.9.

Figure 2.9 Keil™ ULINK2

Disassemble the Keil™ ULINK2 by unscrewing the bottom screw. There should be a jumper on the PCB. Ensure that the jumper is at the same position as shown in Figure 2.10.

Connect the 20-pin ribbon cable on the Keil™ ULINK2 to the JTAG connector (P2) on the ZAMC4100 Evaluation Board shown in Figure 2.13. See section 1.3.8 for more information about P2.

Figure 2.10 Keil ULINK2 Jumper Position
2.2.4. Keil™ µVision4 Project Debugger Selection

This section describes setting up the Keil™ µVision4 IDE to use either the Keil™ ULINK2 or the J-LINK® Lite ARM® JTAG debug probe. First, show the project options from the Project/Options menu from the Keil™ µVision IDE and select the appropriate debugger/programmer. Figure 2.11 shows the correct settings for the ULINK2, and Figure 2.12 shows the correct settings for the J-LINK® Lite ARM® JTAG debug probe.

Figure 2.11 Keil™ µVision4 IDE Debugger Setup for the Keil™ ULINK2
Figure 2.12 Keil™ µVision4 IDE Debugger Setup for the Segger J-LINK® Lite ARM® JTAG Probe
2.2.5. EVB Hardware Pre-check
Before connecting the ZAMC4100 Evaluation Board, verify the correct jumper settings on the Evaluation Board. The schematic of the Evaluation Board can be found in Appendix B of this document.

Figure 2.13 ZAMC4100 Evaluation Board – Connector and Jumper Description
2.2.6. Connecting the Hardware
This section describes how the boards should be connected in order to work with the demonstration GUI. Ensure that power and the LIN communication lines between the EVB and LIN Communication Board are properly connected. Polarity of the power supply and LIN ground connection should be checked as well.

Figure 2.14 Step 1: Hardware Setup ZAMC4100 Evaluation Board with LIN Communication Board

![Hardware Setup](image)

2.2.7. Step 2: Connect the LIN Communication Board to the PC via the USB Cable Type B
Figure 2.15 shows the full hardware connection diagram. The computer must be Windows® based with Microsoft®.Net Framework 3.5 installed.

Figure 2.15 Step 2: Full Hardware Connection Diagram

![Full Hardware Connection Diagram](image)

Important Equipment Warning: This diagram is valid ONLY if no loads are used. If loads are used, then an external power supply must be used instead of the 12V supplied from the LIN Communication Board.
2.3. Using the Graphical User Interface (GUI)
This section describes how to use the demonstration GUI. The GUI is designed to be easy to use and to demonstrate basic features of the ZAMC4100.

2.3.1. Starting the GUI
After the Keil™ µVision IDE and ZAMC4100 software package are installed, start the Keil™ µVision4 IDE by clicking its icon and then select “Books” as shown in Figure 2.16.

Figure 2.16 Keil™ µVision4 IDE with ZAMC4100 Package Installed

Then double-click on “Start ZAMC4100 Demo Application.” If all prerequisites are set up, the demonstration GUI will appear.

When the GUI is started for the first time, the license agreement dialog will be displayed. Click the “I agree” checkbox and then the “Done” button. The license agreement can be viewed at any time by selecting Show License from the Help menu.
Figure 2.17 License Agreement

After the license has been accepted, the main window appears.

Figure 2.18 ZAMC4100 GUI Main Window
When the GUI is started for the first time or if the configuration has been changed, the GUI will be in offline mode; i.e., no communication with the Evaluation Kit has been established. The communication interface must be setup up first. This is done by clicking the “Config...” button.

Figure 2.19 ZAMC4100 GUI Communication Setup

Select the following settings and then click “OK”:

- The communication interface should be “FTDI LIN.”
- The LIN TX Frame ID should be 0x38.
- The LIN RX Frame ID should be 0x39.

When the “OK” button is clicked, the message "New interface selected!" will be displayed in the log area at the bottom of the screen. If instead the “Cancel” button is clicked, the message “Interface selection is cancelled” will be displayed in the log area.
2.3.2. Connect to EVB

Connection to the EVB is established when the “Connect” button is clicked. When the connection is established, the “Connect” button becomes disabled and the “Disconnect” button will be enabled. LED11 will flash as long as the EVB is powered. This LED indicates that the demonstration firmware is running.

Figure 2.20 LED Indication

Note that in order LED11 to flash, J8 must be shunted.

When the GUI is in operating mode, it communicates periodically with the EVB. This is indicated by the two flashing LEDs on the LIN Communication Board. When the GUI is disconnected, the LEDs are off.

Figure 2.21 shows a typical screen when the GUI is connected to the EVB.
2.3.3. Mirror Control and Visualization

The main window of the GUI is divided into three parts:

- Mirror Control
- Mirror Position
- Mirror Temperature

The next sections give more detailed information about the purpose of each section of the screen.
2.3.3.1. Mirror Control

This section is located on the left of the main window. It can be used to turn on/off all half bridges (HB1 to HB4) and high side drivers (HS1 to HS4). Figure 2.22 and Table 2.2 provide detailed information about the functions of the buttons.

Figure 2.22 Description of Mirror Control Buttons

![Image of Mirror Control Buttons]

Table 2.2 Mirror Control Buttons

Note: the LEDs referred to in the table are located on the left side of the Evaluation Board adjacent to the edge connectors and can be identified by the silkscreen labels on the board.

<table>
<thead>
<tr>
<th>Action</th>
<th>Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Click/Hold on the UP arrow</td>
<td>The high side of half bridge 4 and LED4 will be turned ON. When the button is released, they will be turned OFF.</td>
</tr>
<tr>
<td>Click/Hold on the DOWN arrow</td>
<td>The low side of half bridge 4 and LED1 will be turned ON. When the button is released, they will be turned OFF.</td>
</tr>
<tr>
<td>Click/Hold on the LEFT arrow</td>
<td>The high side of half bridge 3 and LED8 will be turned ON. When the button is released, they will be turned OFF.</td>
</tr>
<tr>
<td>Click/Hold on the RIGHT arrow</td>
<td>The low side of half bridge 3 and LED6 will be turned ON. When the button is released, they will be turned OFF.</td>
</tr>
<tr>
<td>Click on the TURN SIGNAL button</td>
<td>If the TURN SIGNAL is ON, then the button will be colored green and LED18 and LED19 will be turned ON. Otherwise, the button will stay as its original color and the LEDs will be turned OFF.</td>
</tr>
</tbody>
</table>
Click on the HEATER LAMP button
If the HEATER LAMP is ON, then the button will be colored orange and LED22 and LED26 will be turned ON. Otherwise, the button will stay as its original color and the LEDs will be turned OFF.

Click on the BSD LAMP button
If the BSD LAMP is ON, then the button will be colored red and LED23 and LED24 will be turned ON. Otherwise, the button will stay as its original color and the LEDs will be turned OFF.

Click on the PUDDLE LAMP button
If the PUDDLE LAMP is ON, then the button will be colored light blue and LED20 and LED21 will be turned ON. Otherwise, the button will stay as its original color and the LEDs will be turned OFF.

Click the FOLDING MIRROR button
The high side of half bridge 1 and LED16 will be turned ON. When the mirror is fully folded, they will be turned OFF.
\textbf{Note:} When the button is pushed, all other buttons are disabled except the UNFOLD button, while the mirror is folded. The UNFOLD button can be pushed when the mirror is fully folded.

Click the UNFOLDING MIRROR button
The low side of half bridge 1 and LED17 will be turned ON. When the mirror is fully unfolded, they will be turned OFF.
\textbf{Note:} When the button is pushed, all other buttons are disabled while the mirror is not fully unfolded.

Figure 2.23 illustrates the effects of clicking the buttons.

\textit{Figure 2.23 Effects of Clicking Buttons}
While the mirror is folding/unfolding, all other buttons are disabled as shown in Figure 2.24.

Figure 2.24 Mirror Folding/Unfolding

![Mirror Folding/Unfolding](image)

2.3.3.2. Mirror Position

The current position of the mirror is shown on the graph illustrated in Figure 2.24 and Figure 2.25. The position can be changed via potentiometers RP1 for the X-axis and RP2 for the Y-axis if using the on-board potentiometers to simulate mirror signals (J3 and J4 should be in the RP1 and RP2 position as illustrated in Figure 2.26). See “X/Y Mirror Adjustment” in Figure 1.5 for the location of RP1 and RP2.

Note that if an actual mirror with potentiometers is connected then J3 and J4 should be in the EXT position.

Figure 2.25 Mirror Position

![Mirror Position](image)
2.3.3.3. Mirror Temperature

The “Mirror Temperature” section of the GUI shows the external temperature of the mirror in degrees Celsius. This temperature can be measured by temperature sensor Q2 mounted on the Evaluation Board. To measure and display the temperature via Q2, set J5 to the INT position.

Figure 2.27 “Mirror Temperature” Display and J5 for External Temperature Selection
2.3.3.4. Electrochromatic Mirror

It is possible to test the ECM feature via the slider under the mirror graphic. Depending on the position of the slider, the background color of the graphic will be different with a corresponding voltage difference on the ECM output (see Figure 2.28).

Note: When the GUI is started, LED25 is on but it is dim. When the slider is moved, the ECM driver starts and the LED adjacent to the ECM output should glow brightly. If the slider is moved so that the display becomes darker, the LED becomes dimmer.

Figure 2.28 Simulation of the ECM Function
2.3.3.5. Registers Window

The registers display feature is primarily intended for engineering purposes. It allows the user to view all the SBC registers of the ZAMC4100, which are divided into several groups. To access this feature, click on Settings > Registers on the top menu or press Ctrl+R.

Figure 2.29 Displaying the Registers Window

When this command is selected, all SBC registers are read, which takes a few seconds. Then a window similar to Figure 2.30 is displayed. Refer to the ZAMC4100 Data Sheet for further details about the registers.

Figure 2.30 Registers Window

The ZAMC4100 registers available for display are divided into the following six groups. Click the group name to display its registers. Figure 2.30 illustrates the display of registers in the "Global" group.

- Global
- Drivers
- ADC
- LIN PHY
- PWM
- Analog

The registers window allows SBC registers to be read and/or written.
For only reading a register, click the “Read” button next to the register. If the operation is successful, then the background of the register value will change to a green color as shown in Figure 2.31.

Figure 2.31 Reading a Register

![Reading a Register](image)

There are two ways to modify a value:

- Type the hexadecimal or decimal value in the “Register Value” field, and then press the Enter key.
- Check/uncheck the bits. A check represents a logical 1.

Modifying a value does not initiate a WRITE operation. The “Write” button must be clicked for the value to be written into the corresponding register.

For example, if the value 0x0F is written into the HSDCTRL register then the LEDs for all high sides (LED18, LED19, LED23, LED24, LED20, LED21, LED22, and LED26) should be turned ON.

Figure 2.32 Writing to a Register

![Writing to a Register](image)
Furthermore the register display window offers a detailed description about the function of each bit in the register. To access this information for a bit, hold the mouse pointer over the bit. The following information is provided in a tool-tip:

- Short and full name of the bit
- The definitions of each of its two possible states
- Type of access permitted for the bit

Figure 2.33 Accessing Bit Descriptions
3 Related Documents

<table>
<thead>
<tr>
<th>Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZAMC4100 Datasheet</td>
</tr>
<tr>
<td>ZAMC4100 Application Kit Description</td>
</tr>
</tbody>
</table>

Visit the ZAMC4100 product page www.IDT.com/ZAMC4100 or contact your nearest sales office for the latest version of these documents.

4 Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMC</td>
<td>Actuator and Motor Controller</td>
</tr>
<tr>
<td>BSD Lamp</td>
<td>Blind Spot Detection (The BSD lamp is lit when there is an object (e.g., another vehicle) in the driver’s blind spot.)</td>
</tr>
<tr>
<td>ECM</td>
<td>Electrochromatic Mirror</td>
</tr>
<tr>
<td>EVB</td>
<td>Evaluation Board</td>
</tr>
<tr>
<td>GPIO</td>
<td>General-Purpose Input/Output</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>HB</td>
<td>Half Bridge</td>
</tr>
<tr>
<td>HS</td>
<td>High Side</td>
</tr>
<tr>
<td>JTAG</td>
<td>Based on IEEE 1149.1 Standard Test Access Port and Boundary-Scan Architecture</td>
</tr>
<tr>
<td>LS</td>
<td>Low Side</td>
</tr>
<tr>
<td>PSU</td>
<td>Power Supply Unit</td>
</tr>
<tr>
<td>SBC</td>
<td>System Basis Chip</td>
</tr>
</tbody>
</table>
5 Document Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>June 4, 2015</td>
<td>First release.</td>
</tr>
<tr>
<td>1.10</td>
<td>August 4, 2015</td>
<td>Update for new contents for GUI zip and GUI setup. Addition of J-LINK® Lite® ARM description. Updates for new revision 1.1 of the ZAMC4100 Evaluation Board, including figures, schematics, and BOM.</td>
</tr>
<tr>
<td></td>
<td>April 15, 2016</td>
<td>Changed to IDT branding.</td>
</tr>
</tbody>
</table>
Appendix B Evaluation Board Schematic
Appendix C Bill of Materials

Table 5.1 Bill of Materials

Note: Components marked with an asterisk (*) are for the Adapter Board.

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Value</th>
<th>Type</th>
<th>Package</th>
<th>Manufacturer</th>
<th>Supplier</th>
<th>Order Code</th>
<th>Pieces</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>U1</td>
<td>BA05CC0WFP ROHM SMD</td>
<td>5.0V±2% 1A, LDO 0.5V, Vinmax=25V, ON/OFF</td>
<td>TO252-5</td>
<td>Rohm</td>
<td>Comet</td>
<td>BA05CC0WFP ROHM SMD</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>U2, U3</td>
<td>TXB0104D</td>
<td>IC, SM, LOGIC, TRANSlator</td>
<td>SOIC14</td>
<td>TEXAS INS</td>
<td>Farnell</td>
<td>1607890</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>TP1 to TP15</td>
<td>KEYSTONE 5006</td>
<td></td>
<td></td>
<td>Keystone</td>
<td>Comet</td>
<td>KEYSTONE 5006</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>D1</td>
<td>BAT54C SMD (SOT23)</td>
<td>Schottky 30V 2x200mA 5ns 10pF, konf C</td>
<td>SOT23</td>
<td>Comet</td>
<td>BAT54C SMD (SOT23)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>D2, D3</td>
<td>1N5819 (SS14)</td>
<td>40V 1A UFMO.6V/1A IFM30A IR1mA, Schottky</td>
<td>SMA</td>
<td>Yangjie</td>
<td>Comet</td>
<td>1N5819(SS14) SMD YJ</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>D6</td>
<td>BZV55C3V3</td>
<td>500 mW 5% 3.3V minimef</td>
<td>SOD80C</td>
<td>Vishay</td>
<td>Comet</td>
<td>BZV55C3V3</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>LED2, 5, 1, 6, 16,</td>
<td>HI-2012UG-T</td>
<td>Green LED</td>
<td>0805</td>
<td>HITANO</td>
<td>MT1</td>
<td>7419</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>LED4, 8, 17, 18, 19</td>
<td>HI-2012HY-T</td>
<td>Yellow LED</td>
<td>0805</td>
<td>HITANO</td>
<td>MT1</td>
<td>8832</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>LED3, 7, 9-15, 22, 23, 24</td>
<td>HI-2012HRF-T</td>
<td>Red LED</td>
<td>0805</td>
<td>HITANO</td>
<td>MT1</td>
<td>7418</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>LED20, 21</td>
<td>UE-ST170NW1-10T</td>
<td>White LED</td>
<td>0805</td>
<td>HITANO</td>
<td>MT1</td>
<td>8222</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>LED25</td>
<td>KP-2012QBC-D</td>
<td>2.0x1.2mm (0805), 100 mcd/20mA, BLUE</td>
<td>0805</td>
<td>Kingbright</td>
<td>Comet</td>
<td>KP-2012QBC-D</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>RP1, 2</td>
<td>PNZ 10Z A 10K</td>
<td>PNZ 10Z A 10K lin 20% 10x11mm vert.</td>
<td>ISKRA</td>
<td>Comet</td>
<td>PNZ 10Z A 10K</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Knob for RP</td>
<td>KNOB PNZ10 393 BLACK</td>
<td>PNZ 10/11Z A, black</td>
<td>ISKRA</td>
<td>Comet</td>
<td>KNOB PNZ10 393 BLACK</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Value</td>
<td>Type</td>
<td>Package</td>
<td>Manufacturer</td>
<td>Supplier</td>
<td>Order Code</td>
<td>Pieces</td>
</tr>
<tr>
<td>-----</td>
<td>---------------</td>
<td>----------------</td>
<td>-----------------------------------</td>
<td>---------</td>
<td>----------------</td>
<td>------------</td>
<td>-----------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>14</td>
<td>C2 *</td>
<td>10uF / 50V</td>
<td>SMD/SMT CAP, MLCC, 1210, 50V X7R 10uF 10%</td>
<td>1210</td>
<td>Taiyo Yuden</td>
<td>Mouser</td>
<td>963-UMK325AB7106KM-T</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>C3 *</td>
<td>C0805 100nF 50V X7R SAMSU</td>
<td>100nF 50V X7R +-10%</td>
<td>0805</td>
<td>Samsung</td>
<td>Comet</td>
<td>C0805 100nF 50V X7R SAMSU</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>C14 *</td>
<td>C0805 220nF 50V X7R SAMSU</td>
<td>220nF 50V X7R +-10%</td>
<td>0805</td>
<td>Samsung</td>
<td>Comet</td>
<td>C0805 220nF 50V X7R SAMSU</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>C11, C12, C13 *</td>
<td>C0805 47nF 50V X7R SAMSUN</td>
<td>47nF 50V X7R +-10%</td>
<td>0805</td>
<td>Samsung</td>
<td>Comet</td>
<td>C0805 47nF 50V X7R SAMSUN</td>
<td>3</td>
</tr>
<tr>
<td>18</td>
<td>C4, C5</td>
<td>C0805 1.0uF 50V X7R SAMSUNG</td>
<td>1.0uF 50V X7R +-10%</td>
<td>0805</td>
<td>Samsung</td>
<td>Comet</td>
<td>C0805 1.0uF 50V X7R SAMSUNG</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>C10, C11, C15</td>
<td>C0805 100nF 50V X7R SAMSU</td>
<td>100nF 50V X7R +-10%</td>
<td>0805</td>
<td>Samsung</td>
<td>Comet</td>
<td>C0805 100nF 50V X7R SAMSU</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>C7, C8</td>
<td>C0805 6.8nF 50V X7R SAMSU</td>
<td>6.8nF 50V X7R +-10%</td>
<td>0805</td>
<td>Samsung</td>
<td>Comet</td>
<td>C0805 6.8nF 50V X7R SAMSU</td>
<td>2</td>
</tr>
<tr>
<td>21</td>
<td>C1, C6</td>
<td>C0805 68nF 50V X7R SAMSUN</td>
<td>68nF 50V X7R +-10%</td>
<td>0805</td>
<td>Samsung</td>
<td>Comet</td>
<td>C0805 68nF 50V X7R SAMSUN</td>
<td>2</td>
</tr>
<tr>
<td>22</td>
<td>C9, C12, C13</td>
<td>C0805 1.0nF 50V X7R SAMSU</td>
<td>1.0nF 50V X7R +-10%</td>
<td>0805</td>
<td>Samsung</td>
<td>Comet</td>
<td>C0805 1.0nF 50V X7R SAMSU</td>
<td>3</td>
</tr>
<tr>
<td>23</td>
<td>C14</td>
<td>CE 100uF 16V SMD Fujicon</td>
<td>El. cap. CS 20%, -40~85°C; D6.3xL5.4mm, base 6.6mm</td>
<td>El. cap 6.3mm</td>
<td>Fujicon</td>
<td>Comet</td>
<td>CE 100uF 16V SMD Fujicon</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>R2</td>
<td>R0805 4.7R 1%</td>
<td>RES SMD 0805 1% 4.7R 1/8W</td>
<td>0805</td>
<td>Uni ohm</td>
<td>Comet</td>
<td>R0805 4.7R 1%</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>R16</td>
<td>R0805 4.7M 5%</td>
<td>RES SMD 0805 5% 200ppm 4.7M 1/8W</td>
<td>0805</td>
<td>Uni ohm</td>
<td>Comet</td>
<td>R0805 4.7M 5%</td>
<td>1</td>
</tr>
<tr>
<td>26</td>
<td>R1, R11, R12, R15, R19, R28, R31-R34, R36</td>
<td>R0805 2.2K 1%</td>
<td>RES SMD 0805 1% 100ppm 2.2K 1/8W</td>
<td>0805</td>
<td>Uni ohm</td>
<td>Comet</td>
<td>R0805 2.2K 1%</td>
<td>11</td>
</tr>
<tr>
<td>27</td>
<td>R7</td>
<td>R0805 4.7K 1%</td>
<td>RES SMD 0805 1% 100ppm 4.7K 1/8W</td>
<td>0805</td>
<td>Uni ohm</td>
<td>Comet</td>
<td>R0805 4.7K 1%</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>R29</td>
<td>R0805 33K 1%</td>
<td>RES SMD 0805 1% 100ppm 33K 1/8W</td>
<td>0805</td>
<td>Uni ohm</td>
<td>Comet</td>
<td>R0805 33K 1%</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>R30</td>
<td>R0805 10K 1%</td>
<td>RES SMD 0805 1% 100ppm 10K 1/8W</td>
<td>0805</td>
<td>Uni ohm</td>
<td>Comet</td>
<td>R0805 10K 1%</td>
<td>1</td>
</tr>
<tr>
<td>30</td>
<td>R3-R6</td>
<td>R0805 100K 1%</td>
<td>RES SMD 0805 1% 100ppm 100K 1/8W</td>
<td>0805</td>
<td>Uni ohm</td>
<td>Comet</td>
<td>R0805 100K 1%</td>
<td>5</td>
</tr>
</tbody>
</table>
ZAMC4100 Evaluation Kit Description

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Value</th>
<th>Type</th>
<th>Package</th>
<th>Manufacturer</th>
<th>Supplier</th>
<th>Order Code</th>
<th>Pieces</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>R8, R9</td>
<td>R0805 1.0R 1% YAG/ASJ</td>
<td>RES SMD 0805 1% 100ppm 1R 1/8W</td>
<td>0805</td>
<td>Comet</td>
<td>R0805 1.0R 1% YAG/ASJ</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>R10, R13, R14, R17, R18</td>
<td>R0805 30R 1% YAG/ASJ</td>
<td>RES SMD 0805 1% 100ppm 30R 1/8W</td>
<td>0805</td>
<td>Comet</td>
<td>R0805 30R 1% YAG/ASJ</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>R20-R27, R35</td>
<td>R0805 1.0K 1% YAG/ASJ</td>
<td>RES SMD 0805 1% 100ppm 1K 1/8W</td>
<td>0805</td>
<td>Comet</td>
<td>R0805 1.0K 1% YAG/ASJ</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>R37</td>
<td>R1WCF 47R</td>
<td>Resistor carbon film 1W(5x12) 5% 450ppm 47R</td>
<td>Trh 12.7mm</td>
<td>UniOhm</td>
<td>Comet</td>
<td>R1WCF 47R</td>
<td>1</td>
</tr>
<tr>
<td>35</td>
<td>NTC1</td>
<td>THERMISTOR, NTC, 33K</td>
<td>THERMISTOR, NTC, 33K</td>
<td>0805</td>
<td>AVX</td>
<td>Farnell</td>
<td>2103182</td>
<td>1</td>
</tr>
<tr>
<td>36</td>
<td>Q1</td>
<td>IRF7470</td>
<td>IRF7470, N channel</td>
<td>SO8</td>
<td>International Rectifier</td>
<td>Farnell</td>
<td>9102868</td>
<td>1</td>
</tr>
<tr>
<td>37</td>
<td>Q2</td>
<td>P2N2222AG</td>
<td>P2N2222AG, NPN</td>
<td>TO92</td>
<td>ON SEMI</td>
<td>Farnell</td>
<td>1611371</td>
<td>1</td>
</tr>
<tr>
<td>38</td>
<td>J8</td>
<td>JSA41G0</td>
<td>SWITCH, JUMPER, SPST, 1A, 100V, THD</td>
<td>2.54mm</td>
<td>ITW PANCON</td>
<td>Farnell</td>
<td>1386703</td>
<td>3</td>
</tr>
<tr>
<td>39</td>
<td>P7, P9, P10, P12</td>
<td>BL6.72Z</td>
<td>HEADER, SOCKET, 2.54MM, 72WAY</td>
<td>2x16x2.54 mm</td>
<td>Fisher</td>
<td>Farnell</td>
<td>9728929</td>
<td>4</td>
</tr>
<tr>
<td>40</td>
<td>P2</td>
<td>BH20S</td>
<td>Box Header Connector 2x10</td>
<td>2x10x2.54 mm</td>
<td>Cvilux</td>
<td>Comet</td>
<td>BH20S</td>
<td>1</td>
</tr>
<tr>
<td>41</td>
<td>J1, J2, J3, J4, J5, J6, J7, J9, J10, J11, J12</td>
<td>HN1X40</td>
<td>Single row pin header 1x40 , 2.54mm</td>
<td>1x40x2.54 mm</td>
<td>Cvilux</td>
<td>Comet</td>
<td>HN1X40</td>
<td>1</td>
</tr>
<tr>
<td>42</td>
<td>X1</td>
<td>HN2X20</td>
<td>Double row pin header 2x20, 2.54mm</td>
<td>2x20x2.54 mm</td>
<td>Cvilux</td>
<td>Comet</td>
<td>HN2X20</td>
<td>2</td>
</tr>
<tr>
<td>43</td>
<td>X2, X3, X4</td>
<td>Shorting Link</td>
<td>LINK, SHORTING, 0.4", PK25</td>
<td>10.16mm pitch</td>
<td>Harwin</td>
<td>Farnell</td>
<td>175319</td>
<td>3</td>
</tr>
<tr>
<td>44</td>
<td>Jumper hood</td>
<td>MJ14</td>
<td>Jumper 2.54/14mm</td>
<td>-</td>
<td>Cvilux</td>
<td>Comet</td>
<td>MJ14</td>
<td>7</td>
</tr>
<tr>
<td>45</td>
<td>P4, P5, P8, P14, P20</td>
<td>DG15V-3.5 3P</td>
<td>8A 300V AC AWG28-16 3. 5mm</td>
<td>3x3.5mm</td>
<td>Degson</td>
<td>Comet</td>
<td>DG15V-3.5 3P</td>
<td>5</td>
</tr>
<tr>
<td>No</td>
<td>Name</td>
<td>Value</td>
<td>Type</td>
<td>Package</td>
<td>Manufacturer</td>
<td>Supplier</td>
<td>Order Code</td>
<td>Pieces</td>
</tr>
<tr>
<td>----</td>
<td>-----------------------</td>
<td>---------------------</td>
<td>-----------------------------</td>
<td>-----------</td>
<td>--------------</td>
<td>----------</td>
<td>------------</td>
<td>--------</td>
</tr>
<tr>
<td>46</td>
<td>P1, P3, P11, P13, P15, P16, P17, P18, P19</td>
<td>DG15V-3.5 2P</td>
<td>8A 300V AC AWG28-16 3.5mm</td>
<td>2x3.5mm</td>
<td>Degson</td>
<td>Comet</td>
<td>DG15V-3.5 2P</td>
<td>9</td>
</tr>
</tbody>
</table>