Description

The 8V19N880 is a fully integrated FemtoClock® NG jitter attenuator and clock synthesizer designed as a high-performance clock solution for conditioning and frequency/phase management of wireless base station radio equipment boards. The device is optimized to deliver excellent phase noise performance as required in GSM, WCDMA, LTE, LTE-A, and 5G radio board implementations. The device supports JESD204B (subclass 0 and 1) and JESD204C.

The 8V19N880 has a two-stage PLL architecture that supports both jitter attenuation and frequency multiplication. The first stage PLL is the jitter attenuator and uses an external VCXO for best possible phase noise characteristics. The second stage PLL locks on the PLL-0 output signal and synthesizes the target frequency. The second stage PLL can use the internal or an external high-frequency VCO.

The 8V19N880 supports the clock generation of high-frequency clocks from the selected VCO and low-frequency synchronization signals (SYSREF). SYSREF signals are internally synchronized to the clock signals. Delay functions exist for achieving alignment and controlled phase delay between system reference and clock signals and to align/delay individual output signals. The four redundant inputs are monitored for activity. Four selectable clock switching modes are provided to handle clock input failure scenarios. Auto-lock, individually programmable output frequency dividers, and phase adjustment capabilities are added for additional flexibility.

The 8V19N880 is configured through a 3/4-wire SPI interface and reports lock and signal loss status in internal registers and via the GPIO[1:0] outputs. Internal status bit changes can also be reported via a GPIO output. The device is ideal for driving converter circuits in wireless infrastructure, radar/imaging, and instrumentation/medical applications. The 8V19N880 is a member of the high-performance clock family from IDT.

Features

- High-performance clock RF-PLL with support for JESD204B/C
- Optimized for low phase noise: -150dBc/Hz (800kHz offset; 245.76MHz clock)
- Integrated phase noise of < 80fs RMS typical (12kHz–20MHz)
- Dual-PLL architecture with optional external VCO
- 1st-PLL stage with external VCXO for clock jitter attenuation
- 2nd-PLL with internal FemtoClockNG PLL: 3932.16MHz
 - Optional external VCO frequency range: 700MHz–6GHz
- Nine output channels with a total of 19 outputs, organized in:
 - Two RF clock channels each consisting of two device clocks (≤ 4GHz)/SYSREF outputs; each output can buffer external VCO clocks up to 6GHz
 - Six device clock/SYSREF channels (2 or 3 outputs, ≤ 4GHz)
 - One VCXO-PLL (PLL-0) output
- Configurable integer clock frequency dividers
- Supported clock output frequencies include:
 - From internal VCO: 3932.16, 1966.08, 983.04, 491.52, and 245.76MHz
 - From external VCO: ≤ 6GHz
- Low-power LVPECL/LVDS outputs support configurable signal amplitude, DC and AC coupling, and LVPECL, LVDS line terminations techniques
- Phase delay circuits
 - PLL feedback phase delay for output-to-input alignment
 - Channel phase delay with 512 steps of 127ps
 - Individual output phase delay with four steps of 127ps and additional four steps of 32ps delay for clock/SYSREF alignment
- Redundant input clock architecture with four inputs and
- Input activity monitoring
- Manual and automatic, fault-triggered clock selection modes
- Priority-controlled clock selection
- Digital holdover and hitless switching
- Differential inputs accept LVDS and LVPECL signals
- SYSREF generation modes include internal and external trigger mode for JESD204B/C
- SPI 3/4 wire configuration interface
- Supply voltage: 1.8V (core, output) and 3.3V (oscillator interfaces, 6GHz output supply)
- SPI and control I/O voltage: 1.8V
- Package: 100-CABGA (11x11 mm²)
- Temperature range: -40°C to +95°C (case)

Typical Applications

- Wireless infrastructure applications: GSM, WCDMA, LTE, LTE-A, and 5G
- Ideal clock driver for jitter-sensitive ADC and DAC circuits
- Low phase noise clock generation
- Ethernet line cards
- Radar and imaging
- Instrumentation and medical
Block Diagram

Figure 1. Block Diagram (f_{VCO} = 3932.16MHz)