FEAT URES

HIGHLIGHTS
• Digital PLL locks to GPS or Ethernet physical layer clocks
• Provides clocks for 1 Gigabit and 10 Gigabit Ethernet, QSGMII and XAUI
• Internal Digitally Controlled Oscillator supports IEEE 1588 clocks generation
• Jitter generation <0.3ps RMS (10 kHz to 20 MHz), meets jitter requirements of leading PHYs supporting 10GBASE-R, QSGMII and XAUI

MAIN FEATURES
• Digital PLL synchronizes with GPS or Ethernet connected synchronization sources
• DPLL bandwidth is selectable to be 15 mHz or 1.2 Hz
• DPLL holdover accuracy is 1.1X10^-5 ppm and instantaneous holdover accuracy is 4.4X10^-8 ppm
• Input references are monitored for frequency offset and activity
• DPLL holdover, free run and hitless reference switching can be forced by the host processor or can be automatically controlled by an internal state machine
• Internal DCO has resolution of 0.01105 ppb and can be controlled by an external processor via I2C interface for IEEE 1588 clock generation
• Two Analog PLLs for jitter attenuation and frequency translation
• IN1, IN2 and IN3 accept single ended reference clocks whose frequencies can be 1PPS (1 Hz), 25 MHz, 125 MHz or 156.25 MHz
• OUT1 and OUT2 output differential clocks with frequencies of 125 MHz or 156.25 MHz
• OUT3 outputs a differential clock with frequency of 322.265625 MHz or 644.53125 MHz
• OUT4 outputs a free-running LVCMOS clock with frequency of 25 MHz

OTHER FEATURES
• I2C microprocessor interface mode
• IEEE 1149.1 JTAG Boundary Scan
• 1mm ball pitch CABGA green package

APPLICATIONS
• Industrial Automation
• Power Systems

Figure 1. Functional Block Diagram
DESCRIPTION

The IDT8V89317 10G Ethernet PLL for Industrial Automation and Power Systems is used to synchronize equipment with synchronization sources using the Ethernet physical layer, or with a 1 PPS (1 Hz) GPS clock; it can also be used by external IEEE 1588 clock recovery servos to synthesize IEEE 1588 clocks. The IDT8V89317 ultra-low jitter output clocks can be used to directly synchronize 10GBASE-R Ethernet PHYs and XAUI or QSGMII devices.

The IDT8V89317 synchronization functions are provided by a Digital PLL (DPLL) with an embedded clock synthesizer. The DPLL accepts three single ended reference inputs that can operate at 1PPS (1 Hz), 25 MHz, 125 MHz or 156.25 MHz. The references are continually monitored for loss of signal and for frequency offset per user programmed thresholds. The active reference for the DPLL is determined by forced selection or by automatic selection based on user programmed priorities and locking allowances and based on the reference monitors.

The DPLL supports four primary operating modes: Free-Run, Locked, Holdover and Digitally Controlled Oscillator (DCO) Control. In Free-Run mode the DPLL generates a clock based on the master clock alone. In Locked mode the DPLL filters reference clock jitter with the selected bandwidth. In Locked mode the long-term DPLL frequency accuracy is the same as the long term frequency accuracy of the selected input reference. In Holdover mode the DPLL uses frequency data acquired while in Locked mode to generate accurate frequencies when input references are not available. In DCO Control Mode the DPLL control loop is opened and the DCO can be used by an algorithm (e.g. IEEE 1588 clock servo) running on an external processor to synthesize clock signals.

The IDT8V89317 requires a 12.8 MHz master clock for its reference monitors and other digital circuitry. The frequency accuracy of the master clock determines the frequency accuracy of the DPLL in Free-Run mode. The frequency stability of the master clock determines the frequency stability of the DPLL in Free-Run mode and in Holdover mode. The master clock must be sufficiently stable to support the selected DPLL filtering bandwidth; in particular, the 15 mHz bandwidth requires a very stable temperature compensated crystal oscillator (TCXO) or ovenized crystal oscillator (OCXO). Refer to the IDT application note “Recommended Crystal Oscillators for IDT’s Network Synchronization WAN-PLL™” for guidance.

The DPLL can be configured with a filtering bandwidth of 15 mHz or 1.2 Hz. The 15 mHz bandwidth can be used to lock the DPLL directly to a 1 pulse per second (PPS) reference. 1.2 Hz bandwidth can be used to lock to Ethernet connected synchronization sources operating at 25 MHz, 125 MHz or 156.25 MHz.

The clock synthesized by the IDT8V89317 DPLL is passed through two independent voltage controlled crystal oscillator (VCXO) based jitter attenuating analog PLLs (APLLs). The APLLs drive independent dividers that have differential outputs. The APLLs use external crystal resonators with resonant frequencies equal to the APLL base frequency divided by 25. The output clocks generated by the APLLs exhibit jitter below 0.30ps RMS over the integration range 10 kHz to 20 MHz.

The IDT8V89317 generates a 25 MHz single ended output that is based on the free running 12.8 MHz master clock. The frequency accuracy and the frequency stability of this 25 MHz clock are determined by the master clock.
1 PIN ASSIGNMENT

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>IC1</td>
<td>VDDA</td>
<td>XTAL1_IN</td>
<td>CAP1</td>
<td>IN_APLL1_NEG</td>
<td>IC1</td>
<td>IC1</td>
<td>TDI</td>
<td>IC1</td>
<td>IC2</td>
<td>OSC1</td>
<td>TMS</td>
<td>IC1</td>
<td>TRST</td>
</tr>
<tr>
<td>B</td>
<td>IC1</td>
<td>VSSA</td>
<td>XTAL1_OUT</td>
<td>VSSA</td>
<td>IN_APLL1_POS</td>
<td>IC1</td>
<td>IC1</td>
<td>TDO</td>
<td>VSSA</td>
<td>TCX</td>
<td>VSSA</td>
<td>VSSA</td>
<td>VSSDO</td>
<td>VDDDO</td>
</tr>
<tr>
<td>C</td>
<td>IC1</td>
<td>VDDA</td>
<td>NC</td>
<td>CAP2</td>
<td>IC1</td>
<td>IC1</td>
<td>VDDDO</td>
<td>VSSDO</td>
<td>VDDA</td>
<td>VDDA</td>
<td>VDDA</td>
<td>VDDA</td>
<td>INT_REQ</td>
<td>IC1</td>
</tr>
<tr>
<td>D</td>
<td>VSSA</td>
<td>VSSA</td>
<td>CAP3</td>
<td>VSSA</td>
<td>VDDA</td>
<td>IC1</td>
<td>VSSD</td>
<td>VDDD</td>
<td>IC1</td>
<td>VDDA</td>
<td>VSSA</td>
<td>VDDA</td>
<td>IC1</td>
<td>IC1</td>
</tr>
<tr>
<td>E</td>
<td>IC1</td>
<td>IC1</td>
<td>VSSA</td>
<td>VSSA</td>
<td>VSSA</td>
<td>IC3</td>
<td>VSSD</td>
<td>VDDD</td>
<td>IC1</td>
<td>VSSA</td>
<td>VDDA</td>
<td>VSSA</td>
<td>IC1</td>
<td>IC1</td>
</tr>
<tr>
<td>F</td>
<td>VDDO</td>
<td>VSSD</td>
<td>VSSA</td>
<td>VSSA</td>
<td>VDDA</td>
<td>VSSD</td>
<td>VDDD</td>
<td>VSSD</td>
<td>VDDO</td>
<td>IC1</td>
<td>VDDO</td>
<td>OUT4</td>
<td>VSSDO</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>VSSD</td>
<td>VDDO</td>
<td>VSSA</td>
<td>VSSA</td>
<td>VSSA</td>
<td>VSSD</td>
<td>VDDO</td>
<td>IC1</td>
<td>VDDO</td>
<td>VSSD</td>
<td>IC1</td>
<td>IC1</td>
<td>IC1</td>
<td>IC1</td>
</tr>
<tr>
<td>H</td>
<td>VDDAO</td>
<td>VSSAO</td>
<td>VDDAO</td>
<td>VSSAO</td>
<td>VSSAO</td>
<td>VSSD</td>
<td>VDDO</td>
<td>VSSD</td>
<td>VDDDO</td>
<td>IC1</td>
<td>IC1</td>
<td>RST</td>
<td>IN1</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>OUT1_NEG</td>
<td>OUT1_POS</td>
<td>VDDAO</td>
<td>VSSAO</td>
<td>VDDAO</td>
<td>VSSAO</td>
<td>VDDAO</td>
<td>VSSAO</td>
<td>VDDAO</td>
<td>VSSA</td>
<td>VDDA</td>
<td>DPLL_LOCK</td>
<td>IC1</td>
<td>IN2</td>
</tr>
<tr>
<td>K</td>
<td>VSSAO</td>
<td>VSSAO</td>
<td>VSSAO</td>
<td>VDDAO</td>
<td>VSSAO</td>
<td>VSSAO</td>
<td>VDDAO</td>
<td>VSSAO</td>
<td>VDDAO</td>
<td>VSSD</td>
<td>VDDO</td>
<td>IC1</td>
<td>IC1</td>
<td>I2C_SCL</td>
</tr>
<tr>
<td>L</td>
<td>OUT2_NEG</td>
<td>OUT2_POS</td>
<td>VDDAO</td>
<td>VSSAO</td>
<td>VSSAO</td>
<td>VSSAO</td>
<td>VSSAO</td>
<td>VSSAO</td>
<td>I2C_AD1</td>
<td>I2C_AD2</td>
<td>CAP4</td>
<td>VSSA</td>
<td>CAP5</td>
<td>VSSA</td>
</tr>
<tr>
<td>M</td>
<td>VDDAO</td>
<td>VSSAO</td>
<td>VSSAO</td>
<td>VDDAO</td>
<td>VSSAO</td>
<td>VSSAO</td>
<td>VDDAO</td>
<td>VSSAO</td>
<td>VDDAO</td>
<td>VSSA</td>
<td>VSSA</td>
<td>VSSA</td>
<td>VSSA</td>
<td>NC</td>
</tr>
<tr>
<td>N</td>
<td>VSSAO</td>
<td>OUT3_POS</td>
<td>VSSAO</td>
<td>IC1</td>
<td>VSSAO</td>
<td>IN_APLL2_POS</td>
<td>IC2</td>
<td>IC2</td>
<td>VSSA</td>
<td>XTAL2_OUT</td>
<td>VSSA</td>
<td>IC1</td>
<td>VSSA</td>
<td>VSSA</td>
</tr>
<tr>
<td>P</td>
<td>VDDAO</td>
<td>OUT3_NEG</td>
<td>VSSAO</td>
<td>IC1</td>
<td>VDDAO</td>
<td>IN_APLL2_NEG</td>
<td>IC2</td>
<td>IC2</td>
<td>VDDA</td>
<td>XTAL2_IN</td>
<td>VDDA</td>
<td>IC1</td>
<td>IC1</td>
<td>VDDA</td>
</tr>
</tbody>
</table>

Key:
- **DIFF**: Outputs
- **Outputs**: Inputs
- **Power**: Power
- **Ground**: Ground

Figure 2. Pin Assignment (Top View)
PIN DESCRIPTION

Table 1: Pin Description

<table>
<thead>
<tr>
<th>Name</th>
<th>Pin No.</th>
<th>I/O Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Control Signal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OSCI</td>
<td>A11</td>
<td>I CMOS</td>
<td>OSCI: Crystal Oscillator Master Clock</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A nominal 12.8000 MHz clock provided by a crystal oscillator is input on this pin. It is the master clock for the device.</td>
</tr>
<tr>
<td>RST</td>
<td>H13</td>
<td>I pull-up CMOS</td>
<td>RST: Reset</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A low pulse of at least 50 µs on this pin resets the device. After this pin is high, the device will still be held in reset state for 500 ms (typical).</td>
</tr>
<tr>
<td>Input Clock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN1</td>
<td>H14</td>
<td>I pull-down CMOS</td>
<td>IN1: Input Clock 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Either a 1 PPS, 25 MHz, 125 MHz or 156.25 MHz is input on this pin.</td>
</tr>
<tr>
<td>IN2</td>
<td>J13</td>
<td>I pull-down CMOS</td>
<td>IN2: Input Clock 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Either a 1 PPS, 25 MHz, 125 MHz or 156.25 MHz is input on this pin.</td>
</tr>
<tr>
<td>IN3</td>
<td>J14</td>
<td>I pull-down CMOS</td>
<td>IN3: Input Clock 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Either a 1 PPS, 25 MHz, 125 MHz or 156.25 MHz is input on this pin.</td>
</tr>
<tr>
<td>IN_APLL1_POS / IN_APLL1_NEG</td>
<td>B5 / A5</td>
<td>I pull-up LVPECL / LVDS</td>
<td>IN_APLL1_POS / IN_APLL1_NEG: Input Clock to APLL1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Direct input clock to APLL1.</td>
</tr>
<tr>
<td>IN_APLL2_POS / IN_APLL2_NEG</td>
<td>N6 / P6</td>
<td>I pull-up LVPECL / LVDS</td>
<td>IN_APLL2_POS / IN_APLL2_NEG: Input Clock APLL2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Direct input clock to APLL2.</td>
</tr>
<tr>
<td>Output Clock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUT1_POS / OUT1_NEG</td>
<td>J2 / J1</td>
<td>O LVPECL</td>
<td>OUT1_POS / OUT1_NEG: Positive / Negative Output Clock 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A clock is differentially output on this pair of pins. It outputs either 125 MHz or 156.25 MHz.</td>
</tr>
<tr>
<td>OUT2_POS / OUT2_NEG</td>
<td>L2 / L1</td>
<td>O LVPECL</td>
<td>OUT2_POS / OUT2_NEG: Positive / Negative Output Clock 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A clock is differentially output on this pair of pins. It outputs either 125 MHz or 156.25 MHz.</td>
</tr>
<tr>
<td>OUT3_POS / OUT3_NEG</td>
<td>N2 / P2</td>
<td>O LVPECL</td>
<td>OUT3_POS / OUT3_NEG: Positive / Negative Output Clock 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A clock is differentially output on this pair of pins. It outputs 322.265625 MHz or 644.53125 MHz.</td>
</tr>
<tr>
<td>OUT4</td>
<td>F13</td>
<td>O CMOS</td>
<td>OUT4: CMOS Output Clock 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A free run 25 MHz clock is output on this pin.</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Connect a 10 µF capacitor in parallel with a low ESR 100 nF capacitor between these pins and VSS1.</td>
</tr>
<tr>
<td>XTL1_IN</td>
<td>A3</td>
<td>I Analog</td>
<td>Crystal 1 oscillator input.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Crystal oscillator input for APLL.</td>
</tr>
<tr>
<td>XTL1_OUT</td>
<td>B3</td>
<td>O Analog</td>
<td>Crystal 1 oscillator output.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Crystal oscillator output for APLL.</td>
</tr>
<tr>
<td>XTL2_IN</td>
<td>P10</td>
<td>I Analog</td>
<td>Crystal 2 oscillator input.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Crystal oscillator input for APLL.</td>
</tr>
<tr>
<td>XTL2_OUT</td>
<td>N10</td>
<td>O Analog</td>
<td>Crystal 2 oscillator output.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Crystal oscillator output for APLL.</td>
</tr>
</tbody>
</table>

Lock Indication Signals
Table 1: Pin Description (Continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Pin No.</th>
<th>I/O</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPLL_LOCK</td>
<td>J11</td>
<td>O</td>
<td>CMOS</td>
<td>DPLL lock indicator. This pin goes high when DPLL is locked.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INT_REQ</td>
<td>C13</td>
<td>O</td>
<td>CMOS</td>
<td>INT_REQ: Interrupt Request</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>This pin is used as an interrupt request. The output characteristics are</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>determined by the HZ_EN bit (b1, 0CH) and the INT_POL bit (b0, 0CH).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I2C_SCL</td>
<td>K13</td>
<td>I</td>
<td>Open Drain</td>
<td>I2C_SCL: Serial Clock Line</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>In I2C mode, the serial clock is input on this pin.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I2C_SDA</td>
<td>K14</td>
<td>I/O</td>
<td>Open Drain</td>
<td>I2C_SDA: Serial Data Input/Output</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>In I2C mode, this pin is used as the input/output for the serial data.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I2C_AD1</td>
<td>L8</td>
<td>I</td>
<td>pull-up</td>
<td>I2C_AD1: Device Address Bit 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>In I2C mode, I2C_AD[2:0] pins are the address bus of the microprocessor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>interface.</td>
</tr>
<tr>
<td>I2C_AD2</td>
<td>L9</td>
<td>I</td>
<td>pull-up</td>
<td>I2C_AD2: Device Address Bit 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>In I2C mode, I2C_AD[2:0] pins are the address bus of the microprocessor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>interface.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRST</td>
<td>A14</td>
<td>I</td>
<td>pull-down</td>
<td>CMOS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TRST: JTAG Test Reset (Active Low)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A low signal on this pin resets the JTAG test port. This pin should be</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>connected to ground when JTAG is not used.</td>
</tr>
<tr>
<td>TMS</td>
<td>A12</td>
<td>I</td>
<td>pull-up</td>
<td>CMOS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TMS: JTAG Test Mode Select</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The signal on this pin controls the JTAG test performance and is sampled on</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>the rising edge of TCK.</td>
</tr>
<tr>
<td>TCK</td>
<td>B10</td>
<td>I</td>
<td>pull-down</td>
<td>CMOS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TCK: JTAG Test Clock</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The clock for the JTAG test is input on this pin. TDI and TMS are sampled</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>on the rising edge of TCK and TDO is updated on the falling edge of TCK.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>If TCK is idle at a low level, all stored-state devices contained in the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>test logic will indefinitely retain their state.</td>
</tr>
<tr>
<td>TDI</td>
<td>A8</td>
<td>I</td>
<td>pull-up</td>
<td>CMOS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TDI: JTAG Test Data Input</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The test data is input on this pin. It is clocked into the device on the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>rising edge of TCK.</td>
</tr>
<tr>
<td>TDO</td>
<td>B8</td>
<td>O</td>
<td>CMOS</td>
<td>TDO: JTAG Test Data Output</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The test data is output on this pin. It is clocked out of the device on the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>falling edge of TCK.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TDO pin outputs a high impedance signal except during the process of data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>scanning. The pin can indicate the interrupt of DPLL selected input clock</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fail, as determined by the LOS_FLAG_ON_TDO bit (b6, 0BH).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VDDDD</td>
<td>D8, E8, F1, F8, F10, G2, G7, G9, H8, H10, K9</td>
<td>Power</td>
<td>-</td>
<td>Digital Core Power - +3.3V DC nominal</td>
</tr>
<tr>
<td>VDDDO</td>
<td>B14, C7, F12</td>
<td>Power</td>
<td>-</td>
<td>Digital Output Power - +3.3V DC nominal</td>
</tr>
<tr>
<td>VDDA</td>
<td>A2, C2, C9, C11, C12, D5, D10, D12, E11, F5, J10, P9, P11, P14</td>
<td>Power</td>
<td>-</td>
<td>Analog Core Power - +3.3V DC nominal</td>
</tr>
<tr>
<td>VDDAO</td>
<td>H1, H3, J3, J5, J7, K4, K6, L3, M1, M5, M7, P1, P5</td>
<td>Power</td>
<td>-</td>
<td>Analog Output Power - +3.3V DC nominal</td>
</tr>
<tr>
<td>VSSD</td>
<td>D7, E7, F2, F7, F9, G1, G6, G10, H7, H9, K8, K10</td>
<td>Ground</td>
<td>-</td>
<td>Ground</td>
</tr>
<tr>
<td>VSSDO</td>
<td>B13, C8, F14</td>
<td>Ground</td>
<td>-</td>
<td>Ground</td>
</tr>
</tbody>
</table>
Table 1: Pin Description (Continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Pin No.</th>
<th>I/O</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSSA</td>
<td>B2, B4, B9, B11, B12, C10, D1, D2, D4, D11, E3, E4, E5, E10, E12, F3, F4, F6, J9, G3, G4, G5, J8, L11, L13, M8, M9, M10, M11, N9, N11, N13, N14</td>
<td>Ground</td>
<td>-</td>
<td>Analog Ground</td>
</tr>
<tr>
<td>VSSAO</td>
<td>H2, H4, H5, H6, J4, J6, K1, K2, K3, K5, K7, L4, L5, L6, L7, M2, M3, M4, M6, N1, N3, N5, P3</td>
<td>Ground</td>
<td>-</td>
<td>Analog Output Ground</td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC1</td>
<td>A1, A6, A7, A9, A13, B1, B6, B7, B1, C1, C5, C6, C14, D6, D9, D13, D14, E1, E2, E9, E13, E14, F11, G8, G11, G12, G13, G14, H11, H12, J12, K11, K12, M13, M14, N4, N12, P4, P12, P13</td>
<td>-</td>
<td>-</td>
<td>IC1: Internal Connection Internal Use. These pins should be left open for normal operation.</td>
</tr>
<tr>
<td>IC2</td>
<td>A10, N7, N8, P7, P8</td>
<td>-</td>
<td>-</td>
<td>IC2: Internal Connection Internal Use. These pins should be left open for normal operation.</td>
</tr>
<tr>
<td>IC3</td>
<td>E6</td>
<td>-</td>
<td>-</td>
<td>IC3: Internal Connection Internal Use. This pin should be left open for normal operation.</td>
</tr>
<tr>
<td>NC</td>
<td>C3, M12</td>
<td>-</td>
<td>-</td>
<td>NC: Not Connected These pins should be left open for normal operation.</td>
</tr>
</tbody>
</table>

Note:
1. All the unused input pins should be connected to ground; the output of all the unused output pins are don’t-care.

2.1 RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS

2.1.1 INPUTS

Control Pins

All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A 1 kΩ resistor can be used.

Single-Ended Clock Inputs

For protection, unused single-ended clock inputs should be tied to ground.

Differential Clock Inputs

For applications not requiring the use of a differential input, both *_POS and *_NEG can be left floating. Though not required, but for additional protection, a 1 kΩ resistor can be tied from _IN to ground.

XTAL Inputs

For applications not requiring the use of a crystal oscillator input, both IN and OUT can be left floating. Though not required, but for additional protection, a 1 kΩ resistor can be tied from _IN to ground.

2.1.2 OUTPUTS

Status Pins

For applications not requiring the use of a status pin, we recommend bringing out to a test point for debugging purposes.

Single-Ended Clock Outputs

All unused single-ended clock outputs can be left floating, or can be brought out to a test point for debugging purposes.

Differential Clock Outputs

All unused differential outputs can be left floating. We recommend that there is no trace attached. Both sides of the differential output pair should either be left floating or terminated.
PACKAGE DIMENSIONS

Figure 3. 196-Pin BAG Package Dimensions
ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Process / Temperature Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank</td>
<td>Industrial (-40 °C to +85 °C)</td>
</tr>
<tr>
<td>G</td>
<td>Green</td>
</tr>
<tr>
<td>BA</td>
<td>196 ball 15mm x 15mm CABGA package</td>
</tr>
<tr>
<td>8V89317</td>
<td></td>
</tr>
</tbody>
</table>

REVISION HISTORY
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades. "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.